VSDB is a 'Git' in the form of KV-database.
Based on the powerful version control function of VSDB, you can easily give your data structure the ability to version management.
Make everything versioned !!
Vecx
just like Vec
Mapx
just like HashMap
MapxOrd
just like BTreeMap
Suppose you have a great algorithm like this:
rust
struct GreatAlgo {
a: Vec<...>,
b: BTreeMap<...>,
c: u128,
d: HashMap<...>,
e: ...
}
Simply replace the original structure with the corresponding VSDB data structure, and your algorithm get the powerful version control ability at once!
```rust
struct GreatAlgo {
a: VecxVs<...>,
b: MapxOrdVs<...>,
c: OrphanVs
let algo = GreatAlgo.default();
algo.getbybranchversion(...); algo.branchcreate(...); algo.branchcreatebybasebranch(...); algo.branchcreatebybasebranchversion(...); algo.branchremove(...); algo.version_pop(...); algo.prune(); ```
NOTE !!
the #[derive(Vs)]
macro can be applied to structures
whose internal fields are all types defined in VSDB
(primitive types and their collections are also supported),
but can not be applied to nesting wrapper among VSDB-types,
you should implement the VsMgmt
trait(or a part of it) manually.
This data structure can be handled correctly by #[derive(Vs)]
:
```rust
struct GoodCase
struct SubItem0(MapxVs
struct SubItem1 {
a: OrphanVs
struct SubItem2 { a: i8, b: u128 }
// // A nope implementation of VsMgmt
for custom stateless types.
// // the #[derive(Vs)]
on 'SubItem2' is same as this implementation.
// impl VsMgmt for SubItem2 {
// implvsmethods_nope!();
// }
```
But this one can NOT be handled correctly by #[derive(Vs)]
:
```rust
// It can be compiled, but the result is wrong !
// The versioned methods of the inner 'MapxVs
struct BadCase {
a: VecxVs
Some complete examples:
sled_engine
, use sled as the backend database
rocks_engine
, use rocksdb as the backend database
cbor_codec
, use cbor as the codec
bcs_codec
, use bcs as the codec
Based on the underlying one-dimensional linear storage structure (native kv-database, such as sled/rocksdb, etc.), multiple different namespaces are divided, and then abstract each dimension in the multi-dimensional logical structure based on these divided namespaces.
In the category of kv-database, namespaces can be expressed as different key ranges, or different key prefix.
This is the same as expressing complex data structures in computer memory(the memory itself is just a one-dimensional linear structure).
User data will be divided into two dimensions: 'branch' and 'version', the functions of the 'basic' category are stateless, and the functions of the 'versioned' category are stateful. In the internal implementation, each stateful function is implemented based on its corresponding stateless function, all stateful data has two additional identification dimensions ('branch' and 'version'), somewhat like the logic in Git. Stateless functions do not have the feature of 'version' management, but they have higher performance.
Support multi-key structures in v0.20.x, include versioned kinds.
Draft design:
```rust
struct MapxMultiKey
struct MapxMultiKeyVs