golang
's net/rpc
package and supports both async-std
and tokio
.This crate aims at providing an easy-to-use RPC that is similar to golang
's
net/rpc
.
The usage is similar to that of golang
's net/rpc
with functions sharing similar
names and functionalities. Certain function names are changed to be more "rusty".
Because rust
doesn't have reflection, attribute macros are used to make certain
method "exported".
The most recent breaking changes will be reflected here.
async_tungstenite
, and thus HTTP connections
of versions <0.5.0 are **NOT** compatible with versions >=0.5.0.toy_rpc::error::Error
changed from struct-like variants to simply enum variantslog
for logging (eg. env_logger
).The feature flags can be put into two categories.
Choice of serialization/deserialzation
serde_bincode
: the default codec will use bincode
for serialization/deserializationserde_json
: the default codec will use serde_json
for json
serialization/deserializationserde_cbor
: the default codec will use serde_cbor
for serialization/deserializationserde_rmp
: the default codec will use rmp-serde
for serialization/deserializationChoice of runtime
async_std_runtime
: supports usage with async-std
tokio_runtime
: supports usage with tokio
http_tide
: enables tide
integration on the server side. This also enables async_std_runtime
http_actix_web
: enables actix-web
integration on the server side. This also enables tokio_runtime
http_warp
: enables integration with warp
on the server side. This also enables tokio_runtime
Other trivial feature flags are listed below, and they are likely of no actual usage for you.
docs
std
: serde/std
. There is no actual usage right now.toml
[features]
default = [
"serde_bincode",
"async_std_runtime"
]
The following documentation is adapted based on golang
's documentation.
This crate provides access to the methods marked with #[export_impl]
and #[export_method]
of an object across a network connection. A server
registers an object, making it visible as a service with a name provided by the user.
After the registration, the "exported" methods will be accessible remotely.
A server may register multiple objects as multiple services, and multiple
objects of the same type or different types could be registered on the same
Server
object.
To export a method, use #[export_method]
attribute in an impl block marked with
#[export_impl]
attribute. This crate currently only
support using #[export_impl]
attribute
on one
impl block per type.
```rust struct ExampleService { }
impl ExampleService {
#[exportmethod]
async fn exportedmethod(&self, args: ()) -> Result
async fn not_exported_method(&self, args: ()) -> Result<String, String> {
Ok("This method is NOT exported".to_string())
}
} ```
The methods to export must meet the following criteria on the server side
#[export_impl]
#[export_method]
attributethe method takes one argument other than &self
and returns a Result<T, E>
serde::Deserialize
Ok
type T
of the result must implement trait serde::Serialize
Err
type E
of the result must implement trait ToString
the method is essentially in the form
```rust struct ServiceState { }
impl ServiceState {
#[exportmethod]
async fn methodname(&self, args: Req) -> Result
Req
and Res
are marshaled/unmarshaled (serialized/deserialized) by serde
.
Realistically the Req
and Res
type must also be marshaled/unmarshaled on
the client side, and thus Req
and Res
must both implement both
serde::Serialize
and serde::Deserialize
.
The method's argument reprements the argument provided by the client caller,
and the Ok
type of result represents success parameters to be returned to
the client caller. The Err
type of result is passed back to the client as
a String
.
The server may handle requests on a single connection by calling serve_conn
,
and it may handle multiple connections by creating a async_std::net::TcpListener
and call accept
. Integration with HTTP currently only supports tide
by calling
into_endpoint
.
A client wishing to use the service establishes a async_std::net::TcpStream
connection
and then creates Client
over the connection. The convenience function dial
performs
this step for raw TCP socket connection, and dial_http
performs this for an HTTP
connection. A Client
with HTTP connection or socket connection has three methods, call
, async_call
,
and spawn_task
, to specify the service and method to call and the argument.
Please note that call_http
, async_call_http
and spawn_task_http
are becoming deprecated
as the same API now can be called for both a socket client and an HTTP client.
call
method is synchronous and waits for the remote call
to complete and then returns the result in a blocking manner.async_call
is the async
versions of call
and call_http
,
respectively. Because they are async
functions, they must be called with .await
to
be executed.spawn_task
method spawns an async
task and returns a JoinHandle
.
The result can be obtained using the JoinHandle
. Please note that
async_std::task::JoinHandle
and tokio::task::JoinHandle
behave slightly different.
Executing .await
on async_std::task::JoinHandle
returns Result<Res, toy_rpc::error::Error>
.
However, executing .await
on tokio::task::JoinHandle
returns
`ResultUnless an explicity codec is set up (with serve_codec
method, HTTP is NOT supported yet),
the default codec specified by one of the following features tags (serde_bincode
, serde_json
serde_cbor
, serde_rmp
) will be used to transport data.
async-std
and tokio
Starting from version 0.5.0-beta.2
, you can use toy-rpc
with either runtime by choosing
the corresponding feature flag (async_std_runtime
, tokio_runtime
).
Similar to choosing the runtimes, toy-rpc
supports integration with actix-web
, tide
,
and warp
by choosing the corresponding feature flag (http_tide
, http_actix_web
http_warp
). Starting from version 0.5.0-beta.0
the integration is implemented using
WebSocket as the transport protocol, and the DEFAULT_RPC_SERVER=_rpc_
is appended to the path you
supply to the HTTP framework. The client side support is not based on async_tungstenite
and removed usage of surf
. Thus versions >=0.5.0-beta.0
are NOT compatible
with versions <0.5.0-beta.0
. The examples below are also updated to reflect
the changes.
A few simple examples are shown below. More examples can be found in the examples
directory in the repo. All examples here will assume the follwing
RPC service definition below.
The examples here will also need some other dependencies
```toml [dependencies]
toy-rpc = { version = "0.5.0" }
async-std = { version = "1.9.0", features = ["attributes"] } tokio = { version = "1.2.0", features = ["rt", "rt-multi-thread", "macros", "net", "sync"] } tide = "0.16.0" actix-web = "3.3.2" warp = "0.3.0"
async-trait = "0.1.42" env_logger = "0.8.2" log = "0.4.14" serde = { version = "1.0.123", features = ["derive"] }
```
```rust pub mod rpc { use serde::{Serialize, Deserialize}; use toyrpc::macros::exportimpl;
// use tokio::sync::Mutex; // uncomment this for the examples that use tokio runtim
// use async_std::sync::Mutex; // uncomment this for the examples that use async-std runtime
pub struct ExampleService {
pub counter: Mutex<i32>
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ExampleRequest {
pub a: u32,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ExampleResponse {
a: u32,
}
#[async_trait::async_trait]
trait Rpc {
async fn echo(&self, req: ExampleRequest) -> Result<ExampleResponse, String>;
}
#[async_trait::async_trait]
#[export_impl]
impl Rpc for ExampleService {
#[export_method]
async fn echo(&self, req: ExampleRequest) -> Result<ExampleResponse, String> {
let mut counter = self.counter.lock().await;
*counter += 1;
let res = ExampleResponse{ a: req.a };
Ok(res)
}
}
} ```
async-std
This example will assume the RPC service defined above,
and you may need to uncomment the line use async_std::sync::Mutex;
in the RPC service definition
for this example.
The default feature flags will work with the example below.
server.rs
```rust use asyncstd::net::TcpListener; use asyncstd::sync::{Arc, Mutex}; use asyncstd::task; use toyrpc::macros::service; use toy_rpc::Server;
use crate::rpc; // assume the rpc module can be found here
async fn main() { env_logger::init();
let addr = "127.0.0.1:8080";
let example_service = Arc::new(
rpc::ExampleService {
counter: Mutex::new(0),
}
);
// notice that the second argument in `service!()` macro is a path
let server = Server::builder()
.register("example", service!(example_service, rpc::ExampleService))
.build();
let listener = TcpListener::bind(addr).await.unwrap();
println!("Starting listener at {}", &addr);
let handle = task::spawn(async move {
server.accept(listener).await.unwrap();
});
handle.await;
} ```
client.rs
```rust use toyrpc::Client; use toyrpc::error::Error;
use crate::rpc; // assume the rpc module can be found here
async fn main() { let addr = "127.0.0.1:8080"; let client = Client::dial(addr).await.unwrap();
let args = rpc::ExampleRequest{a: 1};
let reply: Result<rpc::ExampleResponse, Error> = client.call("example.echo", &args);
println!("{:?}", reply);
client.close().await;
} ```
tokio
This example will assume the RPC service defined above
and you may need to uncomment the line use tokio::sync::Mutex;
in the RPC service definition
for this example.
The default feature flags will NOT work for this example, and you need to change the feature flags.
rust
[dependencies]
toy_rpc = { version = "0.5.0", default-features = false, features = ["serde_bincode", "tokio_runtime"] }
server.rs
```rust use std::sync::Arc; use tokio::net::TcpListener; use tokio::sync::Mutex; use tokio::task; use toyrpc::macros::service; use toyrpc::Server;
use crate::rpc; // assume the rpc module can be found here
async fn main() { env_logger::init();
let addr = "127.0.0.1:8080";
let example_service = Arc::new(
rpc::ExampleService {
counter: Mutex::new(0),
}
);
// notice that the second argument in `service!()` macro is a path
let server = Server::builder()
.register("example", service!(example_service, rpc::ExampleService))
.build();
let listener = TcpListener::bind(addr).await.unwrap();
println!("Starting listener at {}", &addr);
let handle = task::spawn(async move {
server.accept(listener).await.unwrap();
});
// tokio JoinHandle returns an extra result
handle.await.unwrap();
} ```
client.rs
```rust use toyrpc::Client; use toyrpc::error::Error;
use crate::rpc; // assume the rpc module can be found here
async fn main() { let addr = "127.0.0.1:8080"; let client = Client::dial(addr).await.unwrap();
let args = rpc::ExampleRequest{a: 1};
let reply: Result<rpc::ExampleResponse, Error> = client.call("example.echo", &args);
println!("{:?}", reply);
client.close().await;
} ```
tide
This example will assume the RPC service defined above
and you may need to uncomment the line use async_std::sync::Mutex;
in the RPC service definition
for this example.
An example client to use with HTTP can be found in a separate example here. The default feature flags will NOT work with this example, and you need to change the feature flags.
toml
toy_rpc = { version = "0.5.0", default-features = false, features = ["serde_bincode", "http_tide"] }
server.rs
```rust use asyncstd::sync::{Arc, Mutex}; use toyrpc::macros::service; use toy_rpc::Server;
use crate::rpc; // assume the rpc module can be found here
async fn main() -> tide::Result<()> { env_logger::init();
let addr = "127.0.0.1:8080";
let example_service = Arc::new(
rpc::ExampleService {
counter: Mutex::new(0),
}
);
let server = Server::builder()
.register("example", service!(example_service, rpc::ExampleService))
.build();
let mut app = tide::new();
app.at("/rpc/").nest(server.handle_http());
// with `http_tide`, the line above can also be replaced with the line below
//app.at("/rpc/").nest(server.into_endpoint());
app.listen(addr).await?;
Ok(())
}
```
actix-web
This example will assume the RPC service defined above
and you may need to uncomment the line use tokio::sync::Mutex;
in the RPC service definition
for this example.
An example client to use with HTTP can be found in a another example here. The default feature flags will NOT work with this example, and you need to change the feature flags.
toml
toy_rpc = { version = "0.5.0", default-features = false, features = ["serde_bincode", "http_actix_web"] }
server.rs
```rust use std::sync::Arc; use tokio::sync::Mutex; use actixweb::{App, HttpServer, web}; use toyrpc::macros::service; use toy_rpc::Server;
use crate::rpc; // assume the rpc module can be found here
async fn main() -> std::io::Result<()> { env_logger::init();
let addr = "127.0.0.1:8080";
let example_service = Arc::new(
rpc::ExampleService {
counter: Mutex::new(0),
}
);
let server = Server::builder()
.register("example", service!(example_service, rpc::ExampleService))
.build();
let app_data = web::Data::new(server);
HttpServer::new(
move || {
App::new()
.service(
web::scope("/rpc/")
.app_data(app_data.clone())
.configure(Server::handle_http())
// with `http_actix_web`, the line above can also be replaced with the line below
//.configure(Server::scope_config)
)
}
)
.bind(addr)?
.run()
.await
}
```
warp
This example will assume the RPC service defined above
and you may need to uncomment the line use tokio::sync::Mutex;
in the RPC service definition
for this example.
An example client to use with HTTP can be found in a another example here. The default feature flags will NOT work with this example, and you need to change the feature flags.
toml
toy_rpc = { version = "0.5.0", default-features = false, features = ["serde_bincode", "http_warp"] }
server.rs
```rust use warp::Filter; use std::sync::Arc; use tokio::sync::Mutex; use toyrpc::macros::service; use toyrpc::Server;
use crate::rpc; // assume the rpc module can be found here
async fn main() { envlogger::init(); let exampleservice = Arc::new( rpc::ExampleService { counter: Mutex::new(0), } );
let server = Server::builder()
.register("example", service!(example_service, rpc::ExampleService))
.build();
let routes = warp::path("rpc")
.and(server.handle_http());
// RPC will be served at "ws://127.0.0.1:8080/rpc/_rpc_"
warp::serve(routes).run(([127, 0, 0, 1], 8080)).await;
}
```
This example will assume the RPC service defined above. The default feature flags will work with this example. However, you may also use client with any runtime or http feature flag.
All HTTP examples assumes that the RPC server is found at "127.0.0.1/rpc/" endpoint.
```rust use toyrpc::Client; use toyrpc::error::Error;
use crate::rpc; // assume the rpc module can be found here
// choose the runtime attribute accordingly //#[tokio::main]
async fn main() { // note that the url scheme is "ws" let addr = "ws://127.0.0.1:8080/rpc/"; let client = Client::dial_http(addr).await.unwrap();
let args = rpc::ExampleRequest{a: 1};
let reply: Result<rpc::ExampleResponse, Error> = client.call("example.echo", &args);
println!("{:?}", reply);
client.close().await;
} ```
Breaking changes
async_tungstenite
, and thus HTTP connections
of versions <0.5.0 are not compatible with versions >=0.5.0.toy_rpc::error::Error
changed from struct-like variants to simple enum variantsNon-breaking changes
Stream
and Sink
impl from the custom binary transport protocol Frame
Sink
implementation for the custom binary transport protocol Frame
CodecRead
, CodecWrite
, ServerCodec
, ClientCodec
to no longer
return number of bytes writtencall
, async_call
and spawn_task
for socket client
and HTTP client. The call_http
, async_call_http
, and spawn_task_http
methods are kept for compatibility.spawn_task()
and spawn_task_http()
with Arc<Mutex<_>>
until
lifetime with async task is figured out. As a result, Client
no longer needs to be declared mut
.actix-web
feature flag to support integration with actix-web
serde_rmp
features flagserde_cbor
feature flagbincode
feature flag to serde_bincode
The following items are in no particulars order.
License: MIT/Apache-2.0