tfrecord-rust

The crate provides the functionality to serialize and deserialize TFRecord data format from TensorFlow.

Features

Usage

Append this line to your Cargo.toml.

tfrecord = "0.1.1"

The crate provides several cargo features that you can conditionally compile modules.

By default, the crate compiles the pre-built ProtocolBuffer code in the repository. If you would like to re-run the code generation, see Generate ProtocolBuffer code from TensorFlow section.

Documentation

See docs.rs for the API.

Example

File reading example

This is a snipplet copied from examples/tfrecord_info.rs.

```rust use tfrecord::{EasyExampleReader, EasyFeature, Error, RecordReaderInit};

fn main() -> Result<(), Error> { // use init pattern to construct the tfrecord reader let reader: EasyExampleReader<_> = RecordReaderInit { checkintegrity: true, } .open(&*INPUTTFRECORD_PATH)?;

// print header
println!("example_no\tfeature_no\tname\ttype\tsize");

// enumerate examples
for (example_index, result) in reader.enumerate() {
    let example = result?;

    // enumerate features in an example
    for (feature_index, (name, feature)) in example.into_iter().enumerate() {
        print!("{}\t{}\t{}\t", example_index, feature_index, name);

        match feature {
            EasyFeature::BytesList(list) => {
                println!("bytes\t{}", list.len());
            }
            EasyFeature::FloatList(list) => {
                println!("float\t{}", list.len());
            }
            EasyFeature::Int64List(list) => {
                println!("int64\t{}", list.len());
            }
            EasyFeature::None => {
                println!("none");
            }
        }
    }
}

Ok(())

} ```

Work with async/await syntax

The snipplet from examples/tfrecord_info_async.rs demonstrates the integration with async-std.

```rust use futures::stream::TryStreamExt; use std::{fs::File, io::BufWriter, path::PathBuf}; use tfrecord::{EasyFeature, Error, RecordStreamInit};

[async_std::main]

async fn main() -> Result<(), Error> { // use init pattern to construct the tfrecord stream let stream = RecordStreamInit { checkintegrity: true, } .easyexamplesopen(&*INPUTTFRECORD_PATH) .await?;

// print header
println!("example_no\tfeature_no\tname\ttype\tsize");

// enumerate examples
stream
    .try_fold(0, |example_index, example| {
        async move {
            // enumerate features in an example
            for (feature_index, (name, feature)) in example.into_iter().enumerate() {
                print!("{}\t{}\t{}\t", example_index, feature_index, name);

                match feature {
                    EasyFeature::BytesList(list) => {
                        println!("bytes\t{}", list.len());
                    }
                    EasyFeature::FloatList(list) => {
                        println!("float\t{}", list.len());
                    }
                    EasyFeature::Int64List(list) => {
                        println!("int64\t{}", list.len());
                    }
                    EasyFeature::None => {
                        println!("none");
                    }
                }
            }

            Ok(example_index + 1)
        }
    })
    .await?;

Ok(())

} ```

More examples

Also, we suggest visiting the test code for more detailed usage.

Generate ProtocolBuffer code from TensorFlow

The crate relies on ProtocolBuffer documents from TensorFlow. The crate ships pre-generated code from ProtocolBuffer documents by default. Most users don't need to bother with the code generation. The step is needed only in case of TensorFlow updates or your custom patch.

The build script accepts several ways to access the TensorFlow source code, controlled by the TFRECORD_BUILD_METHOD environment variable. The generated code will be placed under prebuild_src directory. See the examples below to understand the usage.

sh export TFRECORD_BUILD_METHOD="src_file:///home/myname/tensorflow-2.2.0.tar.gz" cargo build --release --features serde,generate_protobuf_src # with serde cargo build --release --features generate_protobuf_src # without serde

sh export TFRECORD_BUILD_METHOD="src_dir:///home/myname/tensorflow-2.2.0" cargo build --release --features serde,generate_protobuf_src # with serde cargo build --release --features generate_protobuf_src # without serde

sh export TFRECORD_BUILD_METHOD="url://https://github.com/tensorflow/tensorflow/archive/v2.2.0.tar.gz" cargo build --release --features serde,generate_protobuf_src # with serde cargo build --release --features generate_protobuf_src # without serde

sh export TFRECORD_BUILD_METHOD="install_prefix:///usr" cargo build --release --features serde,generate_protobuf_src # with serde cargo build --release --features generate_protobuf_src # without serde

License

MIT license. See LICENSE file for full license.