Tensorism

A small experimental library for manipulating arrays with multiple indexes. It is meant to be: * Concise: Specific macros can be used to easily express transformations in a form similar to the related mathematical expressions. * Type-safe: Compatibility of dimensions can be checked at compilation time.

Overview

Tensorism is divided into two sibling crates: * tensorism (this library) contains types and traits. * tensorism-gen contains macros to efficiently write formulas.

Examples

let tau = make!(::sum(i $ mM[i, i])); // Or equivalently: make!((i $ mM[i, i]).sum()) ``` $$\tau \leftarrow \sum{i=0}^3 M{i, i}$$

let mC = make!(i k $ ::sum(j $ mA[i, j] * mB[j, k])); ``` $$\forall i \in 0 .. 7,\quad \forall k \in 0 .. 5,\quad C{i, k} \leftarrow \sum{0 \leq j < 4} A{i, j} \cdot B{j, k}$$

let mX = make!(i j $ maximumof(k $ tD[i, j, k])); // : Tensor2, StaticDimTag<25>, Instant> let mY = make!(k i $ maximumof(j $ tD[i, j, k])); // : Tensor2, StaticDimTag<10>, Instant> let v = make!(j $ maximumof(i k $ tD[i, j, k])); // : Tensor1, Instant> let d = make!(maximumof(i j k $ tD[i, j, k])); // : Instant ``` $$\forall i \in 0 .. 10,\quad \forall j \in 0 .. 25,\quad X{i, j} \leftarrow \max{0 \leq k < 3} D_{i, j, k}$$

$$\forall k \in 0 .. 3,\quad \forall i \in 0 .. 10,\quad Y{k, i} \leftarrow \max{0 \leq j < 25} D_{i, j, k}$$

$$\forall j \in 0 .. 25,\quad vj \leftarrow \underset{0 \leq k < 3}{\max{0 \leq i < 10}} D_{i, j, k}$$

$$d \leftarrow \underset{0 \leq k < 3}{\underset{0 \leq j < 25}{\max{0 \leq i < 10}}} D{i, j, k}$$

let u = make!(i $ intersectionof(j $ &mA[i, j])); // : Tensor1, HashSet> let v = make!(j $ intersectionof(i $ &mA[i, j])); // : Tensor1, HashSet> ``` $$\forall i \in 0 .. 4,\quad uj \leftarrow \bigcap{0 \leq j < 3} A_{i, j}$$

$$\forall j \in 0 .. 3,\quad vj \leftarrow \bigcap{0 \leq i < 4} A_{i, j}$$

let p = make!(k $ forall(i $ exists(j $ q[i, j, k]))); ``` $$\forall k \in 0 .. 7,\quad pk \leftarrow \Big( \forall i \in 0 .. 3, \ \exists j \in 0 .. 9, \ q{i, j, k} \Big)$$

let mZ = make!(i k $ if exists(j $ q[i, j, k] && 0f64 <= mA[i, j]) { ::sum(l $ mLambda[k, l] * sin(2 * PI * mA[i, l])) } else { product(m $ mA[i, m] + mB[k, m]) }); ``` $$\forall i \in 0 .. 3,\quad \forall k \in 0 .. 7,\quad Z{i, k} \leftarrow \begin{cases} \sum{0 \leq l < 13} \Lambda{k, l} \cdot \sin\left(2 \cdot \pi \cdot A{i, l} \right) & \mathrm{if} & \exists j \in 0 .. 9, \ q{i, j, k} \wedge 0 \leq A{i, j}\ \prod{0 \leq m < 13} (A{i, m} + B_{k, m}) & \mathrm{else} \end{cases}$$