Experimental rust bindings for PyTorch. The code generation part for the C api on top of libtorch comes from ocaml-torch.
This crate requires the C++ version of PyTorch (libtorch) to be available on
your system. You can either install it manually and let the build script now about
it via the LIBTORCH
environment variable. If not set, the build script will
try downloading and extracting a pre-built binary version of libtorch.
libtorch
from the
PyTorch website download section and extract
the content of the zip file..bashrc
or equivalent.
bash
export LIBTORCH=/path/to/libtorch
export LD_LIBRARY_PATH=${LIBTORCH}/lib:$LD_LIBRARY_PATH
cargo run --example basics
.The following code defines a simple model with one hidden layer.
```rust struct Net { fc1: nn::Linear, fc2: nn::Linear, }
impl Net { fn new(vs: &mut nn::VarStore) -> Net { let fc1 = nn::Linear::new(vs, IMAGEDIM, HIDDENNODES); let fc2 = nn::Linear::new(vs, HIDDEN_NODES, LABELS); Net { fc1, fc2 } } }
impl nn::Module for Net { fn forward(&self, xs: &Tensor) -> Tensor { xs.apply(&self.fc1).relu().apply(&self.fc2) } } ```
This model can then be trained on the MNIST dataset with the following code.
ocaml
fn main() {
let m = tch::vision::mnist::load_dir(std::path::Path::new("data")).unwrap();
let mut vs = nn::VarStore::new(Device::Cpu);
let net = Net::new(&mut vs);
let opt = nn::Optimizer::adam(&vs, 1e-3, Default::default());
for epoch in 1..200 {
let loss = net
.forward(&m.train_images)
.cross_entropy_for_logits(&m.train_labels);
opt.backward_step(&loss);
let test_accuracy = net
.forward(&m.test_images)
.accuracy_for_logits(&m.test_labels);
println!(
"epoch: {:4} train loss: {:8.5} test acc: {:5.2}%",
epoch,
f64::from(&loss),
100. * f64::from(&test_accuracy),
);
}
}
More examples can be found in the examples
directory. They can be run
using the following command:
bash
cargo run --example mnist_nn