tch-rs

Experimental rust bindings for PyTorch. The code generation part for the C api on top of libtorch comes from ocaml-torch.

Instructions

Examples

The following code defines a simple model with one hidden layer.

```rust struct Net { fc1: nn::Linear, fc2: nn::Linear, }

impl Net { fn new(vs: &mut nn::VarStore) -> Net { let fc1 = nn::Linear::new(vs, IMAGEDIM, HIDDENNODES); let fc2 = nn::Linear::new(vs, HIDDEN_NODES, LABELS); Net { fc1, fc2 } } }

impl nn::Module for Net { fn forward(&self, xs: &Tensor) -> Tensor { xs.apply(&self.fc1).relu().apply(&self.fc2) } } ```

This model can then be trained on the MNIST dataset with the following code.

ocaml fn main() { let m = tch::vision::mnist::load_dir(std::path::Path::new("data")).unwrap(); let mut vs = nn::VarStore::new(Device::Cpu); let net = Net::new(&mut vs); let opt = nn::Optimizer::adam(&vs, 1e-3, Default::default()); for epoch in 1..200 { let loss = net .forward(&m.train_images) .cross_entropy_for_logits(&m.train_labels); opt.backward_step(&loss); let test_accuracy = net .forward(&m.test_images) .accuracy_for_logits(&m.test_labels); println!( "epoch: {:4} train loss: {:8.5} test acc: {:5.2}%", epoch, f64::from(&loss), 100. * f64::from(&test_accuracy), ); } } More examples can be found in the examples directory. They can be run using the following command:

bash cargo run --example mnist_nn