svdlibrs   ![Latest Version]

A Rust port of LAS2 from SVDLIBC

A library that computes an svd on a sparse matrix, typically a large sparse matrix

This is a functional port (mostly a translation) of the algorithm as implemented in Doug Rohde's SVDLIBC

This library performs singular value decomposition on a sparse input Matrix using the Lanczos algorithm and returns the decomposition as ndarray components.

Usage

Input: Sparse Matrix (CSR, CSC, or COO)

Output: decomposition U,S,V where U,V are Array2 and S is Array1, packaged in a Result\<SvdRec, SvdLibError>

Quick Start

There are 3 convenience methods to handle common use cases

  1. svd -- simply computes an SVD

  2. svd_dim -- computes an SVD supplying a desired numer of dimensions

  3. svd_dim_seed -- computes an SVD supplying a desired numer of dimensions and a fixed seed to the LAS2 algorithm (the algorithm initializes with a random vector and will generate an internal seed if one isn't supplied)

```rust use svdlibrs::svd;

// SVD on a Compressed Sparse Row matrix let svd = svd(&csr)?; ```

```rust use svdlibrs::svd_dim;

// SVD on a Compressed Sparse Column matrix specifying the desired dimensions, 3 in this example let svd = svd_dim(&csc, 3)?; ```

```rust use svdlibrs::svddimseed;

// SVD on a Coordinate-form matrix requesting the // dimensions and supplying a fixed seed to the LAS2 algorithm let svd = svddimseed(&coo, dimensions, 12345)?; ```

The SVD and informational Diagnostics are returned in SvdRec

```rust pub struct SvdRec { pub d: usize, // Dimensionality (rank), the number of rows of both ut, vt and the length of s pub ut: Array2, // Transpose of left singular vectors, the vectors are the rows of ut pub s: Array1, // Singular values (length d) pub vt: Array2, // Transpose of right singular vectors, the vectors are the rows of vt pub diagnostics: Diagnostics, // Computational diagnostics }

pub struct Diagnostics { pub nonzero: usize, // Number of non-zeros in the input matrix pub dimensions: usize, // Number of dimensions attempted (bounded by matrix shape) pub iterations: usize, // Number of iterations attempted (bounded by dimensions and matrix shape) pub transposed: bool, // True if the matrix was transposed internally pub lanczossteps: usize, // Number of Lanczos steps performed pub ritzvaluesstabilized: usize, // Number of ritz values pub significantvalues: usize, // Number of significant values discovered pub singularvalues: usize, // Number of singular values returned pub endinterval: [f64; 2], // Left, Right end of interval containing unwanted eigenvalues pub kappa: f64, // Relative accuracy of ritz values acceptable as eigenvalues pub randomseed: u32, // Random seed provided or the seed generated } ```

The method svdLAS2 provides the following parameter control

```rust use svdlibrs::{svd, svddim, svddim_seed, svdLAS2, SvdRec};

let svd: SvdRec = svdLAS2( &matrix, // sparse matrix (nalgebrasparse::{csr,csc,coo} dimensions, // upper limit of desired number of dimensions // supplying 0 will use the input matrix shape to determine dimensions iterations, // number of algorithm iterations // supplying 0 will use the input matrix shape to determine iterations endinterval, // left, right end of interval containing unwanted eigenvalues, // typically small values centered around zero /// set to [-1.0e-30, 1.0e-30] for convenience methods svd(), svddim(), svddimseed() kappa, // relative accuracy of ritz values acceptable as eigenvalues /// set to 1.0e-6 for convenience methods svd(), svddim(), svddimseed() random_seed, // a supplied seed if > 0, otherwise an internal seed will be generated )?; ```

SVD Examples

SVD using R

```text $ Rscript -e 'options(digits=12);m<-matrix(1:9,nrow=3)^2;print(m);r<-svd(m);print(r);r$u%%diag(r$d)%%t(r$v)'

• The input matrix: M [,1] [,2] [,3] [1,] 1 16 49 [2,] 4 25 64 [3,] 9 36 81

• The diagonal matrix (singular values): S $d [1] 123.676578742544 6.084527896514 0.287038004183

• The left singular vectors: U $u [,1] [,2] [,3] [1,] -0.415206840886 -0.753443585619 -0.509829424976 [2,] -0.556377565194 -0.233080213641 0.797569820742 [3,] -0.719755016815 0.614814099788 -0.322422608499

• The right singular vectors: V $v [,1] [,2] [,3] [1,] -0.0737286909592 0.632351847728 -0.771164846712 [2,] -0.3756889918995 0.698691000150 0.608842071210 [3,] -0.9238083467338 -0.334607272761 -0.186054055373

• Recreating the original input matrix: r$u %% diag(r$d) %% t(r$v) [,1] [,2] [,3] [1,] 1 16 49 [2,] 4 25 64 [3,] 9 36 81 ```

SVD using svdlibrs

• Cargo.toml dependencies text [dependencies] svdlibrs = "0.5.1" nalgebra-sparse = "0.9.0" ndarray = "0.15.6"

```rust extern crate ndarray; use ndarray::prelude::*; use nalgebrasparse::{coo::CooMatrix, csc::CscMatrix}; use svdlibrs::svddim_seed;

fn main() { // create a CscMatrix from a CooMatrix // use the same matrix values as the R example above // [,1] [,2] [,3] // [1,] 1 16 49 // [2,] 4 25 64 // [3,] 9 36 81 let mut coo = CooMatrix::::new(3, 3); coo.push(0, 0, 1.0); coo.push(0, 1, 16.0); coo.push(0, 2, 49.0); coo.push(1, 0, 4.0); coo.push(1, 1, 25.0); coo.push(1, 2, 64.0); coo.push(2, 0, 9.0); coo.push(2, 1, 36.0); coo.push(2, 2, 81.0);

// our input
let csc = CscMatrix::from(&coo);

// compute the svd
// 1. supply 0 as the dimension (requesting max)
// 2. supply a fixed seed so outputs are repeatable between runs
let svd = svd_dim_seed(&csc, 0, 3141).unwrap();

// svd.d dimensions were found by the algorithm
// svd.ut is a 2-d array holding the left vectors
// svd.vt is a 2-d array holding the right vectors
// svd.s is a 1-d array holding the singular values
// assert the shape of all results in terms of svd.d
assert_eq!(svd.d, 3);
assert_eq!(svd.d, svd.ut.nrows());
assert_eq!(svd.d, svd.s.dim());
assert_eq!(svd.d, svd.vt.nrows());

// show transposed output
println!("svd.d = {}\n", svd.d);
println!("U =\n{:#?}\n", svd.ut.t());
println!("S =\n{:#?}\n", svd.s);
println!("V =\n{:#?}\n", svd.vt.t());

// Note: svd.ut & svd.vt are returned in transposed form
// M = USV*
let m_approx = svd.ut.t().dot(&Array2::from_diag(&svd.s)).dot(&svd.vt);
assert_eq!(svd.recompose(), m_approx);

// assert computed values are an acceptable approximation
let epsilon = 1.0e-12;
assert!((m_approx[[0, 0]] - 1.0).abs() < epsilon);
assert!((m_approx[[0, 1]] - 16.0).abs() < epsilon);
assert!((m_approx[[0, 2]] - 49.0).abs() < epsilon);
assert!((m_approx[[1, 0]] - 4.0).abs() < epsilon);
assert!((m_approx[[1, 1]] - 25.0).abs() < epsilon);
assert!((m_approx[[1, 2]] - 64.0).abs() < epsilon);
assert!((m_approx[[2, 0]] - 9.0).abs() < epsilon);
assert!((m_approx[[2, 1]] - 36.0).abs() < epsilon);
assert!((m_approx[[2, 2]] - 81.0).abs() < epsilon);

assert!((svd.s[0] - 123.676578742544).abs() < epsilon);
assert!((svd.s[1] - 6.084527896514).abs() < epsilon);
assert!((svd.s[2] - 0.287038004183).abs() < epsilon);

} ```

Output

```text svd.d = 3

U = [[-0.4152068408862081, -0.7534435856189199, -0.5098294249756481], [-0.556377565193878, -0.23308021364108839, 0.7975698207417085], [-0.719755016814907, 0.6148140997884891, -0.3224226084985998]], shape=[3, 3], strides=[1, 3], layout=Ff (0xa), const ndim=2

S = [123.67657874254405, 6.084527896513759, 0.2870380041828973], shape=[3], strides=[1], layout=CFcf (0xf), const ndim=1

V = [[-0.07372869095916511, 0.6323518477280158, -0.7711648467120451], [-0.3756889918994792, 0.6986910001499903, 0.6088420712097343], [-0.9238083467337805, -0.33460727276072516, -0.18605405537270261]], shape=[3, 3], strides=[1, 3], layout=Ff (0xa), const ndim=2 ```

The full Result\

text svd = Ok( SvdRec { d: 3, ut: [[-0.4152068408862081, -0.556377565193878, -0.719755016814907], [-0.7534435856189199, -0.23308021364108839, 0.6148140997884891], [-0.5098294249756481, 0.7975698207417085, -0.3224226084985998]], shape=[3, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2, s: [123.67657874254405, 6.084527896513759, 0.2870380041828973], shape=[3], strides=[1], layout=CFcf (0xf), const ndim=1, vt: [[-0.07372869095916511, -0.3756889918994792, -0.9238083467337805], [0.6323518477280158, 0.6986910001499903, -0.33460727276072516], [-0.7711648467120451, 0.6088420712097343, -0.18605405537270261]], shape=[3, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2, diagnostics: Diagnostics { non_zero: 9, dimensions: 3, iterations: 3, transposed: false, lanczos_steps: 3, ritz_values_stabilized: 3, significant_values: 3, singular_values: 3, end_interval: [ -1e-30, 1e-30, ], kappa: 1e-6, random_seed: 3141, }, }, )