A library that computes an svd on a sparse matrix, typically a large sparse matrix
A Rust port of LAS2 from SVDLIBC
This is a functional port (mostly a translation) of the algorithm as seen in Doug Rohde's SVDLIBC
This library performs singular value decomposition on a sparse input CscMatrix using the Lanczos algorithm and returns the decomposition as ndarray components.
Input: CscMatrix
Output: decomposition U,S,V where U,V are Array2 and S is Array1
The above ndarray components along with the computed dimension and informational diagnostics are packaged as a Result
```rust use svdlibrs::svd;
/// svd on a sparse matrix
let svd = svd(&csc)?;
rust
use svdlibrs::svd_dim;
/// svd on a sparse matrix specifying a desired dimension, 3 in this example.
let svd = svddim(&csc, 3)?;
rust
use svdlibrs::svddim_seed;
/// svd on a sparse matrix requesting the dimension /// and supplying a fixed seed to the LAS2 algorithm let svd = svddimseed(&csc, dimension, 12345)?; ```
```rust use svdlibrs::{svd, svddim, svddim_seed, svdLAS2, SvdRec};
/// These are equivalent: let svd = svd(&csc)?; let svd = svdLAS2(&csc, 0, 0, &[-1.0e-30, 1.0e-30], 1.0e-6, 0)?;
/// These are equivalent: let svd = svd_dim(&csc, dimension)?; let svd = svdLAS2(&csc, dimension, 0, &[-1.0e-30, 1.0e-30], 1.0e-6, 0)?;
/// These are equivalent: let randomseed = 12345; let svd = svddimseed(&csc, dimension, randomseed)?; let svd = svdLAS2(&csc, dimension, 0, &[-1.0e-30, 1.0e-30], 1.0e-6, random_seed)?;
/// Parameter description let svd: SvdRec = svdLAS2( &csc, // sparse matrix 0, // upper limit of desired number of singular triplets (0 = all) 0, // number of algorithm iterations (0 = smaller of csc rows or columns), // the upper limit of desired number of lanczos steps &[-1.0e-30, 1.0e-30], // left, right end of interval containing unwanted eigenvalues, // typically small values centered around zero, e.g. [-1.0e-30, 1.0e-30] 1.0e-6, // relative accuracy of ritz values acceptable as eigenvalues 0, // a supplied seed if > 0, otherwise an internal seed will be generated )?; ```
```text $ Rscript -e 'options(digits=12);m<-matrix(1:9,nrow=3)^2;print(m);r<-svd(m);print(r);r$u%%diag(r$d)%%t(r$v)'
• The input matrix: M [,1] [,2] [,3] [1,] 1 16 49 [2,] 4 25 64 [3,] 9 36 81
• The diagonal matrix (singular values): S $d [1] 123.676578742544 6.084527896514 0.287038004183
• The left singular vectors: U $u [,1] [,2] [,3] [1,] -0.415206840886 -0.753443585619 -0.509829424976 [2,] -0.556377565194 -0.233080213641 0.797569820742 [3,] -0.719755016815 0.614814099788 -0.322422608499
• The right singular vectors: V $v [,1] [,2] [,3] [1,] -0.0737286909592 0.632351847728 -0.771164846712 [2,] -0.3756889918995 0.698691000150 0.608842071210 [3,] -0.9238083467338 -0.334607272761 -0.186054055373
• Recreating the original input matrix: r$u %% diag(r$d) %% t(r$v) [,1] [,2] [,3] [1,] 1 16 49 [2,] 4 25 64 [3,] 9 36 81 ```
• Cargo.toml dependencies
text
[dependencies]
svdlibrs = "0.4.0"
nalgebra-sparse = "0.6.0"
ndarray = "0.15.4"
```rust extern crate ndarray; use ndarray::prelude::*; use nalgebrasparse::{coo::CooMatrix, csc::CscMatrix}; use svdlibrs::svddim_seed;
fn main() {
let mut coo = CooMatrix::
let csc = CscMatrix::from(&coo);
let svd = svd_dim_seed(&csc, 0, 3141).unwrap();
assert_eq!(svd.d, svd.ut.nrows());
assert_eq!(svd.d, svd.s.dim());
assert_eq!(svd.d, svd.vt.nrows());
println!("svd.d = {}\n", svd.d);
println!("U =\n{:#?}\n", svd.ut.t());
println!("S =\n{:#?}\n", svd.s);
println!("V =\n{:#?}\n", svd.vt.t());
// Note: svd.ut & svd.vt are returned in transposed form
// M = USV*
let matrix_approximation = svd.ut.t().dot(&Array2::from_diag(&svd.s)).dot(&svd.vt);
let epsilon = 1.0e-12;
assert_eq!(svd.d, 3);
assert!((matrix_approximation[[0, 0]] - 1.0).abs() < epsilon);
assert!((matrix_approximation[[0, 1]] - 16.0).abs() < epsilon);
assert!((matrix_approximation[[0, 2]] - 49.0).abs() < epsilon);
assert!((matrix_approximation[[1, 0]] - 4.0).abs() < epsilon);
assert!((matrix_approximation[[1, 1]] - 25.0).abs() < epsilon);
assert!((matrix_approximation[[1, 2]] - 64.0).abs() < epsilon);
assert!((matrix_approximation[[2, 0]] - 9.0).abs() < epsilon);
assert!((matrix_approximation[[2, 1]] - 36.0).abs() < epsilon);
assert!((matrix_approximation[[2, 2]] - 81.0).abs() < epsilon);
assert!((svd.s[0] - 123.676578742544).abs() < epsilon);
assert!((svd.s[1] - 6.084527896514).abs() < epsilon);
assert!((svd.s[2] - 0.287038004183).abs() < epsilon);
} ```
```text svd.d = 3
U = [[-0.4152068408862081, -0.7534435856189199, -0.5098294249756481], [-0.556377565193878, -0.23308021364108839, 0.7975698207417085], [-0.719755016814907, 0.6148140997884891, -0.3224226084985998]], shape=[3, 3], strides=[1, 3], layout=Ff (0xa), const ndim=2
S = [123.67657874254405, 6.084527896513759, 0.2870380041828973], shape=[3], strides=[1], layout=CFcf (0xf), const ndim=1
V = [[-0.07372869095916511, 0.6323518477280158, -0.7711648467120451], [-0.3756889918994792, 0.6986910001499903, 0.6088420712097343], [-0.9238083467337805, -0.33460727276072516, -0.18605405537270261]], shape=[3, 3], strides=[1, 3], layout=Ff (0xa), const ndim=2 ```
text
svd = Ok(
SvdRec {
d: 3,
ut: [[-0.4152068408862081, -0.556377565193878, -0.719755016814907],
[-0.7534435856189199, -0.23308021364108839, 0.6148140997884891],
[-0.5098294249756481, 0.7975698207417085, -0.3224226084985998]], shape=[3, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2,
s: [123.67657874254405, 6.084527896513759, 0.2870380041828973], shape=[3], strides=[1], layout=CFcf (0xf), const ndim=1,
vt: [[-0.07372869095916511, -0.3756889918994792, -0.9238083467337805],
[0.6323518477280158, 0.6986910001499903, -0.33460727276072516],
[-0.7711648467120451, 0.6088420712097343, -0.18605405537270261]], shape=[3, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2,
diagnostics: Diagnostics {
non_zero: 9,
dimensions: 3,
iterations: 3,
transposed: false,
lanczos_steps: 3,
ritz_values_stabilized: 3,
significant_values: 3,
singular_values: 3,
random_seed: 3141,
},
},
)