A stack-allocated lightweight algebra library for bare-metal applications.
This crate provides a stack-allocated matrix type with constant size determined at compile time. The primary goal for this library is to be useful in building robotics applications in rust. This means several things: 1. Target platform is often bare-metal 2. Size of the matrices can usually be defined at compile-time 3. Problem solving does not require large matrices or heavy optimization 4. Users are not experts in rust but often familiar with scientific tools (e.g. python or matlab)
Implementing numerical algorithms in rust can be made much more productive and ergonomic
if simple abstractions and necessary algebra routines are available. This library is
a growing collection of addressing those needs. It is heavily based on
vectrix
for core implementations.
Use cargo to add to your project (or add manually to your Cargo.toml
)
sh
cargo add stack-algebra
Then import to your module by using
rust
use stack_algebra::*; // or import just the items you need
matrix!
macro can be used to create a new matrix
rust
// 2-by-3 matrix
let m = matrix![
1.0, 2.0, 3.0;
4.0, 5.0, 6.0; // Semicolon here is optional
];
vector!
macro can be used to create a row/column vector
```rust
// 1-by-3 row vector
let r = vector![1.0, 2.0, 3.0];
// 3-by-1 column vector let c = vector![1.0; 2.0; 3.0];
// Vector to tuple conversion (for 3 or 4 element vectors) let (x, y, z) = r.into(); ```
eye!
for creating square identity matrix
rust
let m = eye!(2);
let exp = matrix![
1.0, 0.0;
0.0, 1.0
];
assert_eq!(m, exp);
zeros!
for creating zero-valued matrix
```rust
let m = zeros!(2); // Square 2-by-2 matrix
let exp = matrix![
0.0, 0.0;
0.0, 0.0
];
assert_eq!(m, exp);
let m = zeros!(2,3); // 2-by-3 matrix let exp = matrix![ 0.0, 0.0, 0.0; 0.0, 0.0, 0.0 ]; assert_eq!(m, exp); ```
ones!
for creating matrix with 1.0s (same as zeros!
for usage)
diag!
for creating a diagonal matrix with given entries (up to 6-by-6 size)
rust
let m = diag!(1.0, 2.0, 3.0);
let exp = matrix![
1.0, 0.0, 0.0;
0.0, 2.0, 0.0;
0.0, 0.0, 3.0
];
assert_eq!(m, exp);
[i]
or [(r,c)]
to access individual elements
```rust
let m = matrix![
1.0, 2.0, 3.0;
4.0, 5.0, 6.0
];
asserteq!(m[1], 4.0); // Using a single index assumes column-major order asserteq!(m[(1,2)], 6.0); ```
*
, /
, +
, -
for matrix arithmatics
```rust
let m = matrix![
1.0, 2.0;
3.0, 4.0
];
let exp = matrix![ 2.0, 4.0; 6.0, 8.0 ];
assert_eq!(m + m, exp); // Add matrices
let exp = matrix![ 2.0, 3.0; 4.0, 5.0 ];
assert_eq!(m + 1.0, exp); // Add scalar to matrix (note scalar has to be behind the operator) ```
.T()
for matrix transpose
```rust
let m = matrix![
1.0, 2.0;
3.0, 4.0
];
let exp = matrix![ 1.0, 3.0; 2.0, 4.0 ];
assert_eq!(m.T(), exp);
.norm()
for computing the Frobenius norm
rust
let m = matrix![
1.0,-2.0;
-3.0, 6.0;
];
assert_relative_eq!(m.norm(), 7.0710678, max_relative = 1e-6);
.trace()
for sum of diagonal elements of a sqaure matrix
rust
let m = matrix![
9.0, 8.0, 7.0;
6.0, 5.0, 4.0;
3.0, 2.0, 1.0;
];
assert_eq!(m.trace(), 15.0);
.det()
for determinant (only available for square matrix)
rust
let m = matrix![
3.0, 7.0;
1.0, -4.0;
];
assert_eq!(m.det(), -19.0);
.inv()
for inverse of a matrix (for square invertible matrix)
rust
let m = matrix![
6.0, 2.0, 3.0;
1.0, 1.0, 1.0;
0.0, 4.0, 9.0;
];
let exp = matrix![
0.20833333, -0.25, -0.04166667;
-0.375, 2.25, -0.125;
0.16666667, -1.0, 0.16666667;
];
assert_relative_eq!(m.inv().unwrap(), exp, max_relative = 1e-6);
This project is distributed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-APACHE and LICENSE-MIT for details.