An simple solver for sparse complex linear systems based on Eigen::SparseLU.
We use num::Complex
Lets consider the complex linear system bellow:
$$ \begin{bmatrix} 1 - j1 & 0\ 0 & -1 + j1 \end{bmatrix} \begin{bmatrix} x1 \ x2 \end{bmatrix}= \begin{bmatrix} 1 \ j1 \end{bmatrix} $$
We can solve this system as follows:
```rust use num::Complex; use sparse_complex::ComplexMatrix;
let mut m = ComplexMatrix::
let expected = vec![Complex::new(0.5, 0.5), Complex::new(0.5, -0.5)]; assert_eq!(b, expected); ```
The solution of this system is:
$$ \frac{1}{2} \begin{bmatrix} 1 + j1 \ 1 - j1 \end{bmatrix} $$
The sparse_complex
crate is tested for rustc
1.61 and greater.
MIT License. See LICENSE.
sparse_complex
also depends on Eigen v3.4.0 which is licensed under MPL v2.0. The source code of Eigen can be found on Eigen's Home Page.