Rurel is a flexible, reusable reinforcement learning (Q learning) implementation in Rust.
In Cargo.toml:
rurel = "0.2.0"
An example is included. This teaches an agent on a 21x21 grid how to arrive at 10,10, using actions (go left, go up, go right, go down):
cargo run --example eucdist
There are two main traits you need to implement: rurel::mdp::State
and rurel::mdp::Agent
.
A State
is something which defines a Vec
of actions that can be taken from this state, and has a certain reward. A State
needs to define the corresponding action type A
.
An Agent
is something which has a current state, and given an action, can take the action and evaluate the next state.
Let's implement the example in cargo run --example eucdist
. We want to make an agent which is taught how to arrive at 10,10 on a 21x21 grid.
First, let's define a State
, which should represent a position on a 21x21, and the correspoding Action, which is either up, down, left or right.
```rust use rurel::mdp::State;
struct MyState { x: i32, y: i32 }
struct MyAction { dx: i32, dy: i32 }
impl State for MyState {
type A = MyAction;
fn reward(&self) -> f64 {
// Negative Euclidean distance
-((((10 - self.x).pow(2) + (10 - self.y).pow(2)) as f64).sqrt())
}
fn actions(&self) -> Vec
Then define the agent:
```rust use rurel::mdp::Agent;
struct MyAgent { state: MyState }
impl Agent
That's all. Now make a trainer and train the agent with Q learning, with learning rate 0.2, discount factor 0.01 and an initial value of Q of 2.0. We let the trainer run for 100000 iterations, randomly exploring new states.
```rust use rurel::AgentTrainer; use rurel::strategy::learn::QLearning; use rurel::strategy::explore::RandomExploration; use rurel::strategy::terminate::FixedIterations;
let mut trainer = AgentTrainer::new(); let mut agent = MyAgent { state: MyState { x: 0, y: 0 }}; trainer.train(&mut agent, &QLearning::new(0.2, 0.01, 2.), &mut FixedIterations::new(100000), &RandomExploration::new()); ```
After this, you can query the learned value (Q) for a certain action in a certain state by:
rust
trainer.expected_value(&state, &action) // : Option<f64>