Provides a library for solving sparse linear systems using direct methods. This crate uses the algorithms from the book "Direct Methods For Sparse Linear Systems by Dr. Timothy A. Davis."
Note: This library is a work in progress
Sprs
)Vec<Vec<f64>>
matrix to CSC sparse matrix Sprs
Vec<Vec<f64>>
Sprs
and b is a dense vector```rust use rsparse;
fn main(){
// Create a CSC sparse matrix A
let a = rsparse::data::Sprs{
// Maximum number of entries
nzmax: 5,
// number of rows
m: 3,
//number of columns
n: 3,
// Values
x: vec![1., 9., 9., 2., 9.],
// Indices
i: vec![1, 2, 2, 0, 2],
// Pointers
p: vec![0, 2, 3, 5]
};
// Import the same matrix from a dense structure
let mut a2 = rsparse::data::Sprs::new();
a2.from_vec(
&vec![
vec![0., 0., 2.],
vec![1., 0., 0.],
vec![9., 9., 9.]
]
);
// Check if they are the same
assert_eq!(a.nzmax, a2.nzmax);
assert_eq!(a.m,a2.m);
assert_eq!(a.n,a2.n);
assert_eq!(a.x,a2.x);
assert_eq!(a.i,a2.i);
assert_eq!(a.p,a2.p);
// Transform A to dense and print result
println!("\nA");
print_matrix(&a.todense());
// Transpose A
let at = rsparse::transpose(&a);
// Transform to dense and print result
println!("\nAt");
print_matrix(&at.todense());
// B = A + A'
let b = rsparse::add(&a,&at,1.,1.); // C=alpha*A+beta*B
// Transform to dense and print result
println!("\nB");
print_matrix(&b.todense());
// C = A * B
let c = rsparse::multiply(&a, &b);
// Transform to dense and print result
println!("\nC");
print_matrix(&c.todense());
}
fn printmatrix(vec: &Vec
Output:
``` A 0 0 2 1 0 0 9 9 9
At 0 1 9 0 0 9 2 0 9
B 0 1 11 1 0 9 11 9 18
C 22 18 36 0 1 11 108 90 342 ```
```rust use rsparse;
fn main(){ // Arbitrary A matrix (dense) let a = vec![ vec![8.2541e-01, 9.5622e-01, 4.6698e-01, 8.4410e-03, 6.3193e-01, 7.5741e-01, 5.3584e-01, 3.9448e-01], vec![7.4808e-01, 2.0403e-01, 9.4649e-01, 2.5086e-01, 2.6931e-01, 5.5866e-01, 3.1827e-01, 2.9819e-02], vec![6.3980e-01, 9.1615e-01, 8.5515e-01, 9.5323e-01, 7.8323e-01, 8.6003e-01, 7.5761e-01, 8.9255e-01], vec![1.8726e-01, 8.9339e-01, 9.9796e-01, 5.0506e-01, 6.1439e-01, 4.3617e-01, 7.3369e-01, 1.5565e-01], vec![2.8015e-02, 6.3404e-01, 8.4771e-01, 8.6419e-01, 2.7555e-01, 3.5909e-01, 7.6644e-01, 8.9905e-02], vec![9.1817e-01, 8.6629e-01, 5.9917e-01, 1.9346e-01, 2.1960e-01, 1.8676e-01, 8.7020e-01, 2.7891e-01], vec![3.1999e-01, 5.9988e-01, 8.7402e-01, 5.5710e-01, 2.4707e-01, 7.5652e-01, 8.3682e-01, 6.3145e-01], vec![9.3807e-01, 7.5985e-02, 7.8758e-01, 3.6881e-01, 4.4553e-01, 5.5005e-02, 3.3908e-01, 3.4573e-01], ];
// Convert A to sparse
let mut a_sparse = rsparse::data::Sprs::new();
a_sparse.from_vec(&a);
// Generate arbitrary b vector
let mut b = vec![
0.4377,
0.7328,
0.1227,
0.1817,
0.2634,
0.6876,
0.8711,
0.4201
];
// Known solution:
/*
0.264678,
-1.228118,
-0.035452,
-0.676711,
-0.066194,
0.761495,
1.852384,
-0.282992
*/
// A*x=b -> solve for x -> place x in b
rsparse::lusol(&mut a_sparse, &mut b, 1, 1e-6);
println!("\nX");
println!("{:?}", &b);
} ```
Output:
X
[0.2646806068156303, -1.2280777288645675, -0.035491404094236435, -0.6766064748053932, -0.06619898266432682, 0.7615102544801993, 1.8522970972589123, -0.2830302118359591]
Documentation is available at docs.rs.