Rust-based Natural Language Toolkit (rsnltk)

A Rust library to support natural language processing with Python bindings

Rust Docs | Crates Home Page | Tests | NER-Kit

Features

The rsnltk library integrates various existing Python-written NLP toolkits for powerful text analysis in Rust-based applications.

Current Features

This toolkit is based on the Python-written Stanza and other important NLP crates.

A list of functions from Stanza and others we bind here include: - Tokenize - Sentence Segmentation - Multi-Word Token Expansion - Part-of-Speech & Morphological Features - Named Entity Recognition - Sentiment Analysis - Language Identification - Dependency Tree Analysis

Some amazing crates are also included in rsnltk but with simplified APIs for actual use: - word2vec - natural, yn, whatlang.

Additionally, we can calculate the similarity between words based on WordNet though the semantic-kit PyPI project via pip install semantic-kit.

Installation

  1. Make sure you install Python 3.6.6+ and PIP environment in your computer. Type python -V in the Terminal should print no error message;

  2. Install our Python-based ner-kit (version>=0.0.5a2) for binding the Stanza package via pip install ner-kit==0.0.5a2;

  3. Then, Rust should be also installed in your computer. I use IntelliJ to develop Rust-based applications, where you can write Rust codes;

  4. Create a simple Rust application project with a main() function.

  5. Add the rsnltk dependency to the Cargo.toml file, keep up the Latest version.

  6. After you add the rsnltk dependency in the toml file, install necessary language models from Stanza using the following Rust code for the first time you use this package.

rust fn init_rsnltk_and_test(){ // 1. first install the necessary language models using language codes let list_lang=vec!["en","zh"]; //e.g. you install two language models, // namely, for English and Chinese text analysis. download_langs(list_lang); // 2. then do test NLP tasks let text="I like Beijing!"; let lang="en"; // 2. Uncomment the below codes for Chinese NER // let text="我喜欢北京、上海和纽约!"; // let lang="zh"; let list_ner=ner(text,lang); for ner in list_ner{ println!("{:?}",ner); } }

Or you can manually install those language models via the Python-written ner-kit package which provides more features in using Stanza. Go to: ner-kit

If no error occurs in the above example, then it works. Finally, you can try the following advanced example usage.

Currently, we tested the use of English and Chinese language models; however, other language models should work as well.

Examples with Stanza Bindings

Example 1: Part-of-speech Analysis

```rust fn test_pos(){ //let text="我喜欢北京、上海和纽约!"; //let lang="zh"; let text="I like apple"; let lang="en";

let list_result=pos(text,lang);
for word in list_result{
    println!("{:?}",word);
}

} ```

Example 2: Sentiment Analysis ```rust fn test_sentiment(){ //let text="I like Beijing!"; //let lang="en"; let text="我喜欢北京"; let lang="zh";

    let sentiments=sentiment(text,lang);
    for sen in sentiments{
        println!("{:?}",sen);
    }
}

```

Example 3: Named Entity Recognition

rust fn test_ner(){ // 1. for English NER let text="I like Beijing!"; let lang="en"; // 2. Uncomment the below codes for Chinese NER // let text="我喜欢北京、上海和纽约!"; // let lang="zh"; let list_ner=ner(text,lang); for ner in list_ner{ println!("{:?}",ner); } }

Example 4: Tokenize

```rust fn test_tokenize(){

    let text="我喜欢北京、上海和纽约!";
    let lang="zh";

    let list_result=tokenize(text,lang);
    for ner in list_result{
        println!("{:?}",ner);
    }
}

```

Example 5: Tokenize Sentence

rust fn test_tokenize_sentence(){ let text="I like apple. Do you like it? No, I am not sure!"; let lang="en"; let list_sentences=tokenize_sentence(text,lang); for sentence in list_sentences{ println!("Sentence: {}",sentence); } }

Example 6: Language Identification

rust fn test_lang(){ let list_text = vec!["I like Beijing!", "我喜欢北京!", "Bonjour le monde!"]; let list_result=lang(list_text); for lang in list_result{ println!("{:?}",lang); } }

Example 7: MWT expand

rust fn test_mwt_expand(){ let text="Nous avons atteint la fin du sentier."; let lang="fr"; let list_result=mwt_expand(text,lang); }

Example 8: Estimate the similarity between words in WordNet

You need to firstly install semantic-kit PyPI package!

rust fn test_wordnet_similarity(){ let s1="dog.n.1"; let s2="cat.n.2"; let sims=wordnet_similarity(s1,s2); for sim in sims{ println!("{:?}",sim); } }

Example 9: Obtain a dependency tree from a text ```rust fn testdependencytree(){ let text="I like you. Do you like me?"; let lang="en"; let listresults=dependencytree(text,lang); for listtoken in listresults{ for token in list_token{ println!("{:?}",token) }

}

} ```

Examples in Pure Rust

Example 1: Word2Vec

rust fn test_open_wv_bin(){ let wv_model=wv_get_model("GoogleNews-vectors-negative300.bin"); let positive = vec!["woman", "king"]; let negative = vec!["man"]; println!("analogy: {:?}", wv_analogy(&wv_model,positive, negative, 10)); println!("cosine: {:?}", wv_cosine(&wv_model,"man", 10)); }

Example 2: Text summarization

rust use rsnltk::native::summarizer::*; fn test_summarize(){ let text="Some large txt..."; let stopwords=&[]; let summarized_text=summarize(text,stopwords,5); println!("{}",summarized_text); }

Example 3: Token list rust use rsnltk::native::token::get_token_list; fn test_get_token_list(){ let s="Hello, Rust. How are you?"; let result=get_token_list(s); for r in result{ println!("{}\t{:?}",r.text,r); } }

Credits

Thank Stanford NLP Group for their hard work in Stanza.

License

MIT