ENN Ragged Buffer

Actions Status PyPI Discord

This Python package implements an efficient RaggedBuffer datatype that is similar to a 3D numpy array, but which allows for variable sequence length in the second dimension. It was created primarily for use in ENN-PPO and currently only supports a small selection of the numpy array methods.

Ragged Buffer

User Guide

Install the package with pip install ragged-buffer. The package currently supports three RaggedBuffer variants, RaggedBufferF32, RaggedBufferI64, and RaggedBufferBool.

- Creating a RaggedBuffer - Get size - Convert to numpy array - Indexing - Addition - Concatenation - Clear

Creating a RaggedBuffer

There are three ways to create a RaggedBuffer: - RaggedBufferF32(features: int) creates an empty RaggedBuffer with the specified number of features. - RaggedBufferF32.from_flattened(flattened: np.ndarray, lenghts: np.ndarray) creates a RaggedBuffer from a flattened 2D numpy array and a 1D numpy array of lengths. - RaggedBufferF32.from_array creates a RaggedBuffer (with equal sequence lenghts) from a 3D numpy array.

Creating an empty buffer and pushing each row:

```python import numpy as np from ragged_buffer import RaggedBufferF32

Create an empty RaggedBuffer with a feature size of 3

buffer = RaggedBufferF32(3)

Push sequences with 3, 5, 0, and 1 elements

buffer.push(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)) buffer.push(np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24]], dtype=np.float32)) buffer.push(np.array([], dtype=np.float32)) # Alternative: buffer.push_empty() buffer.push(np.array([[25, 25, 27]], dtype=np.float32)) ```

Creating a RaggedBuffer from a flat 2D numpy array which combines the first and second dimension, and an array of sequence lengths:

```python import numpy as np from ragged_buffer import RaggedBufferF32

buffer = RaggedBufferF32.from_flattened( np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24], [25, 25, 27]], dtype=np.float32), np.array([3, 5, 0, 1], dtype=np.int64)) ) ```

Creating a RaggedBuffer from a 3D numpy array (all sequences have the same length):

```python import numpy as np from ragged_buffer import RaggedBufferF32

buffer = RaggedBufferF32.from_array(np.zeros((4, 5, 3), dtype=np.float32)) ```

Get size

The size0, size1, and size2 methods return the number of sequences, the number of elements in a sequence, and the number of features respectively.

```python import numpy as np from ragged_buffer import RaggedBufferF32

buffer = RaggedBufferF32.from_flattened( np.zeros((9, 64), dtype=np.float32), np.array([3, 5, 0, 1], dtype=np.int64)) )

Get size of the first/batch dimension.

assert buffer.size0() == 10

Get size of individual sequences.

assert buffer.size1(1) == 5 assert buffer.size1(2) == 0

Get size of the last/feature dimension.

assert buffer.size2() == 64 ```

Convert to numpy array

as_aray converts a RaggedBuffer to a flat 2D numpy array that combines the first and second dimension.

```python import numpy as np from ragged_buffer import RaggedBufferI64

buffer = RaggedBufferI64(1) buffer.push(np.array([[1], [1], [1]], dtype=np.int64)) buffer.push(np.array([[2], [2]], dtype=np.int64)) assert np.all(buffer.as_array(), np.array([[1], [1], [1], [2], [2]], dtype=np.int64)) ```

Indexing

You can index a RaggedBuffer with a single integer (returning a RaggedBuffer with a single sequence), or with a numpy array of integers selecting/permuting multiple sequences.

```python import numpy as np from ragged_buffer import RaggedBufferF32

Create a new RaggedBufferF32

buffer = RaggedBufferF32.from_flattened( np.arange(0, 40, dtype=np.float32).reshape(10, 4), np.array([3, 5, 0, 1], dtype=np.int64) )

Retrieve the first sequence.

assert np.all( buffer[0].as_array() == np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], dtype=np.float32) )

Get a RaggedBatch with 2 randomly selected sequences.

buffer[np.random.permutation(4)[:2]] ```

Addition

You can add two RaggedBuffers with the + operator if they have the same number of sequences, sequence lengths, and features. You can also add a RaggedBuffer where all sequences have a length of 1 to a RaggedBuffer with variable length sequences, broadcasting along each sequence.

```python import numpy as np from ragged_buffer import RaggedBufferF32

Create ragged buffer with dimensions (3, [1, 3, 2], 1)

rb3 = RaggedBufferI64(1) rb3.push(np.array([[0]], dtype=np.int64)) rb3.push(np.array([[0], [1], [2]], dtype=np.int64)) rb3.push(np.array([[0], [5]], dtype=np.int64))

Create ragged buffer with dimensions (3, [1, 1, 1], 1)

rb4 = RaggedBufferI64.from_array(np.array([0, 3, 10], dtype=np.int64).reshape(3, 1, 1))

Add rb3 and rb4, broadcasting along the sequence dimension.

rb5 = rb3 + rb4 assert np.all( rb5.as_array() == np.array([[0], [3], [4], [5], [10], [15]], dtype=np.int64) ) ```

Concatenation

The extend method can be used to mutate a RaggedBuffer by appending another RaggedBuffer to it.

```python import numpy as np from ragged_buffer import RaggedBufferF32

rb1 = RaggedBufferF32.fromarray(np.zeros((4, 5, 3), dtype=np.float32)) rb2 = RaggedBufferF32.fromarray(np.zeros((2, 5, 3), dtype=np.float32)) rb1.extend(r2) assert rb1.size0() == 6 ```

Clear

The clear method removes all elements from a RaggedBuffer without deallocating the underlying memory.

```python import numpy as np from ragged_buffer import RaggedBufferF32

rb = RaggedBufferF32.from_array(np.zeros((4, 5, 3), dtype=np.float32)) rb.clear() assert rb.size0() == 0 ```

License

ENN Ragged Buffer dual-licensed under Apache-2.0 and MIT.