Lightweight neural network framework written in Rust, with thin python bindings.
Features:
network.to_dict()
& Sequential.from_dict()
Draw backs:
Python:
pip install pyrus-nn # Has ZERO dependencies!
Rust:
toml
[dependencies]
pyrus-nn = "0.2.0"
```python from pyrusnn.models import Sequential from pyrusnn.layers import Dense
model = Sequential(lr=0.001, nepochs=10) model.add(Dense(ninput=12, noutput=24, activation='sigmoid')) model.add(Dense(ninput=24, n_output=1, activation='sigmoid'))
X = [list(range(12)) for _ in range(10)] y = [[i] for i in range(10)]
model.fit(X, y) out = model.predict(X)
```
```rust use ndarray::Array2; use pyrus_nn::{network::Sequential, layers::Dense};
// Network with 4 inputs and 1 output. fn main() { let mut network = Sequential::new(0.001, 100, 32, CostFunc::CrossEntropy); assert!( network.add(Dense::new(4, 5)).isok() ); assert!( network.add(Dense::new(5, 6)).isok() ); assert!( network.add(Dense::new(6, 4)).isok() ); assert!( network.add(Dense::new(4, 1)).isok() );
let X: Array2<f32> = ...
let y: Array2<f32> = ...
network.fit(X.view(), y.view());
let yhat: Array2<f32> = network.predict(another_x.view());
}
```