puffpastry
is a very basic feedforward neuron network library with a focus on parity with mathematical representations. It can be used to create and train simple models.
puffpastry
is used very similarly to keras - stack layers and fit to training data.
```rust
// fromlayers(layers: Vec
let train_inputs = vec![ Tensor::column(vec![0.0, 0.0]), Tensor::column(vec![1.0, 0.0]), Tensor::column(vec![0.0, 1.0]), Tensor::column(vec![1.0, 1.0]), ];
let train_outputs = vec![ Tensor::column(vec![0.0]), Tensor::column(vec![1.0]), Tensor::column(vec![1.0]), Tensor::column(vec![0.0]), ];
// fit(&mut self, inputs, outputs, epochs, learningrate) -> Result model.fit(traininputs, train_outputs, 100, 1.2).unwrap();
// evaluate(&self, input: Tensor) -> Result
Activation functions: [softmax, relu, sigmoid, linear]
Loss functions: [categorical cross entropy, mean squared error]
Layers: [dense]