Prime factorization

main crate

Program to decompose a natural number N, up to u128::MAX, into a product of its prime factors. Based on the fundamental theorem of arithmetic every natural number larger than one is either a prime itself or can be represented as a product of primes that is unique up to the order of these prime numbers.

The whole factorization algorithm consists of trial division with the first one-thousand primes, Fermat's factorization method and Lenstra elliptic-curve factorization using projective coordinates with Suyama's parametrization. After Fermat's and before advancing to elliptic-curve factorization step, possible primality of the number is checked and this is conducted either with Miller-Rabin or strong Baillie-PSW primality test depending on the magnitude of the number. Latter test is not deterministic in the number range it's used here (up to 128 bits) but there aren't known counterexamples.

Install

To install as a dependency (library target) for some other program, add the following to your Cargo.toml

toml [dependencies] prime_factorization = "1.0.3"

For the binary target, run command cargo install prime_factorization and make sure that the installation location is in PATH (i.e., Rust toolchain properly configured).

Use

Use the library as follows

```rust use prime_factorization::Factorization;

// Factorize following semiprime let num: u128 = 3746238285234848709_827;

let factor_repr = Factorization::run(num);

// Check that the returned factors are correct asserteq!(factorrepr.factors, vec![103979, 36028797018963913]); ```

Notice that all integers from 2 to 2^128 - 1 can be factorized but the used integer type must implement (alongside few others) trait From\.

Sometimes it might be enough to check whether a particular number is a prime

```rust use prime_factorization::Factorization;

let num: u128 = 332306998946228968225951765070086_139;

// Use the is_prime convenience field asserteq!(Factorization::run(num).isprime, true); ```

If the binary target was installed, CLI can be used as follows

bash prime_factorization num [-p | --pretty]

where argument num is the mandatory natural number and option -p or --pretty is a print flag which, when given, causes the output to be in the proper factor representation format $$p1^{k1} * ... * pm^{km}$$ Without the flag, output only lists all the prime factors from the smallest to largest.

Remarks

License

This program is licensed under the CC0v1.