pihex

Arbitrary place hexadecimal digits viewer of pi written in Rust. The library is based on the Bailey-Borwein-Plouffe formula (BBP formula) and Bellard's formula.

$ pihex 0: 243f 6a88 85a3 08d3 1319 8a2e 0370 7344 $ pihex 1 2: 3f6a 8885 a308 d313 198a 2e03 7073 44a4 $ pihex 4 4: 6a88 85a3 08d3 1319 8a2e 0370 7344 a409 $ pihex 8 128: 9216 d5d9 8979 fb1b d131 0ba6 98df b5ac $ pihex 65536 65536: 3004 3414 c926 7212 d7fb 8a3f fc7c 7002 $ pihex 1000000 1000000: 6c65 e52c b459 3500 50e4 bb17 8f4c 67a0 $ pihex 10000000 10000000: 7af5 863e fed8 de97 033c d0f6 b80a 3d26 $ pihex 100000000 # defaults to BBP formula 100000000: cb84 0e21 926e c5ae 0d2f 3405 1045 93cb $ pihex --formula bellard 100000000 # yields the same result but faster than BBP formula 100000000: cb84 0e21 926e c5ae 0d2f 3405 1045 93cb Refer to pihex --help for further details.

Author

itchyny (https://github.com/itchyny)

License

This software is released under the MIT License, see LICENSE.

Disclaimer

I tested very carefully but this software does not always answer correctly due to the floating-point inaccuracy. If there's a place with over 53bit zeros in binary representation of pi (I'm not sure where it is), we never ensure the answer calculated by double-precision floating-point numbers is correct. Therefore when you use this software, be careful the answer is not suffered from floating-point calculation errors. If the successive digits in hexadecimal representation repeat '0' or 'f' over 13 times, it's highly inaccurate due to this calculation errors.

References