A proportional-integral-derivative (PID) controller.
setpoint
/kp
/ki
/kd
.
ki
by storing the integration of
e(t) * ki(t)
rather than only e(t)
.f32
or f64
.no_std
environments, such as embedded systems.serde
Cargo feature, if you need Pid
to implement
Serialize
/Deserialize
.```rust use pid::Pid;
// Create a new proportional-only PID controller with a setpoint of 15 let mut pid = Pid::new(15.0, 100.0); pid.p(10.0, 100.0);
// Input a measurement with an error of 5.0 from our setpoint let output = pid.nextcontroloutput(10.0);
// Show that the error is correct by multiplying by our kp asserteq!(output.output, 50.0); // <-- asserteq!(output.p, 50.0);
// It won't change on repeat; the controller is proportional-only let output = pid.nextcontroloutput(10.0); asserteq!(output.output, 50.0); // <-- asserteq!(output.p, 50.0);
// Add a new integral term to the controller and input again pid.i(1.0, 100.0); let output = pid.nextcontroloutput(10.0);
// Now that the integral makes the controller stateful, it will change asserteq!(output.output, 55.0); // <-- asserteq!(output.p, 50.0); assert_eq!(output.i, 5.0);
// Add our final derivative term and match our setpoint target pid.d(2.0, 100.0); let output = pid.nextcontroloutput(15.0);
// The output will now say to go down due to the derivative asserteq!(output.output, -5.0); // <-- asserteq!(output.p, 0.0); asserteq!(output.i, 5.0); asserteq!(output.d, -10.0); ```
t(i) = t(i-1) + C
)-limit <= term <= limit
).There are several different formulations of PID controllers. This library uses the independent form:
where: - C(t) = control output, the output to the actuator. - P(t) = process variable, the measured value. - e(t) = error = S(t) - P(t) - S(t) = set point, the desired target for the process variable.
kp
/ki
/kd
can be changed during operation and can therefore be a function
of time.
If you're interested in the dependent form, add your own logic that computes
kp
/ki
/kd
using dead time, time constant, kc
, or whatever else.
Licensed under either at your discretion: