A proportional-integral-derivative (PID) controller.
kp
/ki
/kd
.
ki
by storing the integration of
e(t) * ki(t)
rather than only e(t)
.f32
or f64
.no_std
environments, such as embedded systems.```rust extern crate pid; use pid::Pid;
fn main() { // Set only kp (proportional) let mut pid = Pid::new(10.0, 0.0, 0.0, 100.0, 100.0, 100.0); // Set our target pid.updatesetpoint(15.0); // Fake a measurement of 10.0, which is an error of 5.0. let output = pid.nextcontroloutput(10.0); // Verify that kp * error = 10.0 * 5.0 = 50.0 asserteq!(output.output, 50.0); // Verify that all output was from the proportional term asserteq!(output.p, 50.0); asserteq!(output.i, 0.0); assert_eq!(output.d, 0.0);
// Verify that the same measurement produces the same output since we
// aren't using the stateful derivative & integral terms.
let output = pid.next_control_output(10.0);
assert_eq!(output.p, 50.0);
// Add an integral term
pid.ki = 1.0;
let output = pid.next_control_output(10.0);
assert_eq!(output.p, 50.0);
// Verify that the integral term is adding to the output signal.
assert_eq!(output.i, 5.0);
assert_eq!(output.output, 55.0);
// Add a derivative term
pid.kd = 2.0;
let output = pid.next_control_output(15.0); // Match the desired target
// No proportional term since no error
assert_eq!(output.p, 0.0);
// Integral term stays the same
assert_eq!(output.i, 5.0);
// Derivative on measurement produces opposing signal
assert_eq!(output.d, -10.0);
assert_eq!(output.output, -5.0);
} ```
t(i) = t(i-1) + C
)-limit <= term <= limit
).There are several different formulations of PID controllers. This library uses the independent form:
where: - C(t) = control output, the output to the actuator. - P(t) = process variable, the measured value. - e(t) = error = S(t) - P(t) - S(t) = set point, the desired target for the process variable.
kp
/ki
/kd
can be changed during operation and can therefore also be a
function of time.
If you're interested in the dependent form, add your own logic that computes
kp
/ki
/kd
using dead time, time constant, kc
, or whatever else.
MAX(p + i + d, global_limit)
.