Overview

A proportional-integral-derivative (PID) controller.

Inspired by pid-rs

With cleaner API and assumptions (constant time delta and symmetrical limits) dropped.

Features

Installation

cargo add pid-ctrl

Examples

```rust use pidctrl; use numtraits;

fn main() { let mut pid = pidctrl::PidCtrl::newwith_pid(3.0, 2.0, 1.0);

let setpoint = 5.0;
let prev_measurement = 0.0;
// calling init optional. Setpoint and prev_measurement set to 0.0 by default.
// Recommended to avoid derivative kick on startup
pid.init(setpoint, prev_measurement);

let measurement = 0.0;
let time_delta = 1.0;
assert_eq!(
    pid.step(pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(15.0, 10.0, 0.0, 25.0)
);

// changing pid constants
pid.kp.set_scale(4.0);
assert_eq!(
    pid.step(pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(20.0, 20.0, 0.0, 40.0)
);

// setting symmetrical limits around zero
pid.kp.limits.set_limit(10.0);
assert_eq!(
    pid.step(pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(10.0, 30.0, 0.0, 40.0)
);

let time_delta = 0.5;
assert_eq!(
    pid.step(pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(10.0, 35.0, 0.0, 45.0)
);

// setting upper limits returns error if new value conflicts with lower limit
pid.ki.limits.try_set_upper(28.0).unwrap();  
assert_eq!(
    pid.step(pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(10.0, 28.0, 0.0, 38.0)
);

// time_delta gets clamped to Float::epsilon() - Float::infinity()
let measurement = 1.0;
let time_delta = -7.0;
pid.kd.set_scale(num_traits::Float::epsilon());
assert_eq!(pid.step(
    pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(10.0, 28.0, -1.0, 37.0)
);

// configure setpoint directly
pid.setpoint = 1.0;
assert_eq!(pid.step(
    pid_ctrl::PidIn::new(measurement, time_delta)), 
    pid_ctrl::PidOut::new(0.0, 28.0, 0.0, 28.0)
);

} ```

Contribute

Feel free to raise issues.

Would like to make #![no_std] optional so types can impl Display trait.