Low-level functions for evaluating and manipulating polynomials.

Examples

The vector of coefficients for the polynomial f(x, y) = 3 x y + x^2 is [0, 3, 0, 1, 0, 0].

With eval() we can evaluate this polynomial:

```rust use nutils_poly;

let coeffs = [0, 3, 0, 1, 0, 0]; asserteq!(nutilspoly::eval(&coeffs, &[1, 0], 2), Ok( 1)); // f(1, 0) = 1 asserteq!(nutilspoly::eval(&coeffs, &[1, 1], 2), Ok( 4)); // f(1, 1) = 4 asserteq!(nutilspoly::eval(&coeffs, &[2, 3], 2), Ok(22)); // f(2, 3) = 22 ```

PartialDerivPlan::apply() computes the coefficients for the partial derivative of a polynomial to one of the variables. The partial derivative of f to x, the first variable, is ∂_x f(x, y) = 3 y + 2 x (coefficients: [3, 2, 0]):

```rust use nutils_poly::PartialDerivPlan;

let coeffs = [0, 3, 0, 1, 0, 0]; let pd = PartialDerivPlan::new( 2, // number of variables 2, // degree 0, // variable to compute the partial derivative to ).unwrap(); asserteq!(Vec::fromiter(pd.apply(coeffs)?), vec![3, 2, 0]);

Ok::<_, nutils_poly::Error>(())

```

Further reading

See the [crate documentation] for a detailed description.

This crate is part of the [Nutils project].