MOP (Many OPtimizations)

CI crates.io Documentation License Rustc

MOP is a flexible and modular framework for different NP-Problems with different solvers. Through its default pipeline you can define your own custom problem and choose any supported solver combination.

See this blog post for more details or have fun using the online playground.

Example

The definitions and results of Binh and Korn, a multi-objective problem with two hard constraints and two objectives.

Binh and Korn

Picture taken from https://en.wikipedia.org/wiki/Testfunctionsforoptimization#Testfunctionsformulti-objective_optimization.

```rust // Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems

use core::cmp::Ordering; use mop::{ blocks::{ gp::{newdefsboref, GpOperations, MpVec, MphDefinitionsBuilder, MphMpMph, MphOrRef, MphVec}, objs::MinCstrsRslts, qualitycomparator::ObjsAvg, ObjDirection, Pct, }, facades::opt::OptFacade, solvers::geneticalgorithm::{ operators::{ crossover::MultiPoint, matingselection::Tournament, mutation::RandomDomainAssignments, }, GeneticAlgorithmParamsBuilder, Spea2, }, };

const RSLTS_NUM: usize = 200;

type Solution = [f64; 2];

fn f1(s: &Solution) -> f64 { 4.0 * s[0].powi(2) + 4.0 * s[1].powi(2) }

fn f2(s: &Solution) -> f64 { (s[0].powi(2) - 10.0 * s[0] + 25.0) + (s[1].powi(2) - 10.0 * s[1] + 25.0) }

fn g1(s: &Solution) -> usize { let lhs = (s[0].powi(2) - 10.0 * s[0] + 25.0) + s[1].powi(2); match lhs.partial_cmp(&25.0) { Some(Ordering::Equal) | Some(Ordering::Less) => 0, _ => 1, } }

fn g2(s: &Solution) -> usize { let lhs = (s[0].powi(2) - 16.0 * s[0] + 64.0) + (s[1].powi(2) + 6.0 * s[1] + 9.0); match lhs.partial_cmp(&7.7) { Some(Ordering::Equal) | Some(Ordering::Greater) => 0, _ => 1, } }

fn printresult(result: MphOrRef) { let solution = result.solution(); let objs = result.objrslts(); let hcs = result.hardcstrrslts(); println!("x0: {}, x1: {}", solution[0], solution[1]); println!("f1: {}, f2: {}", objs[0], objs[1]); println!("g1: {}, g2: {}", hcs[0], hcs[1]); println!(); }

[tokio::main] // Or any other runtime

async fn main() -> Result<(), mop::blocks::Error> { // Problem definitions and results let mut mph = MphVec::withcapacity( MphDefinitionsBuilder::default() .domain([0.0..=5.0, 0.0..=3.0]) .name("Binh and Korn") .pushhardcstr(g1 as fn(&Solution) -> usize) .pushhardcstr(g2 as fn(&Solution) -> usize) .pushobj((ObjDirection::Min, f1 as fn(&Solution) -> f64)) .pushobj((ObjDirection::Min, f2 as fn(&Solution) -> f64)) .build()?, RSLTSNUM, ); let (mphdefs, mut mphrslts) = mph.parts_mut();

// SPEA2 is an unconstrained solver but Binh and Korn is a constrained problem. To workaround // this incompatibility, our mph problem is converted to a mp problem by adding an objective // that minimizes all constraints violations. // // It is possible to define your own converstion procedure with any desired set of objectives. let mcr = MinCstrsRslts::fromgphcs(mphdefs); let mpdefsref = newdefsboref(mphdefs, mphrslts).pushobj(&mcr as &).build()?; let mut mpref = MpVec::withrandomsolutions(mpdefs_ref, 100)?;

// SPEA2 and overall genetic algorithm parameters are specified here. let spea2 = Spea2::new( Pct::frompercent(50), GeneticAlgorithmParamsBuilder::default() .crossover(MultiPoint::new(1, Pct::frompercent(70))) .matingselection(Tournament::new(10, ObjsAvg)) .mutation(RandomDomainAssignments::new(1, Pct::frompercent(30))) .build()?, &mpref, RSLTSNUM, )?;

// Generic criterias to inspect or stop the solving process. let of = OptFacade::new(50) .setopthooks(()) .setqualitycomparator(ObjsAvg) .setstagnation(Pct::frompercent(2i32), 10)? .solveproblemwith(&mut mp_ref, spea2) .await?;

// Transfers all solutions and objectives results of mp to mph. MphMpMph::transfer(&mphdefs, &mut mphrslts, &mp_ref).await?;

for (resultidx, result) in mphrslts.iter().enumerate() { println!(" Result #{} ", resultidx + 1); printresult(result); }

if let Some(bestidx) = of.currbestidx() { if let Some(result) = mph.rslts().get(bestidx) { println!(" Best result "); print_result(result); } }

Ok(()) } ```

Binh and Korn - Objectives

Solvers

Features

Optional features