MOP (Many OPtimizations)

CI crates.io Documentation License Rustc

MOP is a flexible and modular framework for different NP-Problems with different solvers. Through its default pipeline you can define your own custom problem and choose any supported solver combination.

See this blog post for more details or have fun using the online playground.

Example

The definitions and results of Binh and Korn, a multi-objective problem with two hard constraints and two objectives.

Binh and Korn

Picture taken from https://en.wikipedia.org/wiki/Testfunctionsforoptimization#Testfunctionsformulti-objective_optimization.

```rust // Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems

use core::cmp::Ordering; use mop::{ blocks::{ mph::{Mph, MphDefinitionsBuilder, MphOrRef}, ObjDirection, Pct, }, facades::{initialsolutions::RandomInitialSolutions, opt::OptFacadeBuilder}, solvers::{ geneticalgorithm::{ operators::{ crossover::MultiPoint, matingselection::Tournament, mutation::RandomDomainAssignments, }, GeneticAlgorithmParamsBuilder, Spea2, }, qualitycomparator::ParetoComparator, }, };

type Solution = [f64; 2];

fn f1(s: &Solution) -> f64 { 4.0 * s[0].powi(2) + 4.0 * s[1].powi(2) }

fn f2(s: &Solution) -> f64 { (s[0].powi(2) - 10.0 * s[0] + 25.0) + (s[1].powi(2) - 10.0 * s[1] + 25.0) }

fn g1(s: &Solution) -> usize { let lhs = (s[0].powi(2) - 10.0 * s[0] + 25.0) + s[1].powi(2); match lhs.partial_cmp(&25.0) { Some(Ordering::Equal) | Some(Ordering::Less) => 0, _ => 1, } }

fn g2(s: &Solution) -> usize { let lhs = (s[0].powi(2) - 16.0 * s[0] + 64.0) + (s[1].powi(2) + 6.0 * s[1] + 9.0); match lhs.partial_cmp(&7.7) { Some(Ordering::Equal) | Some(Ordering::Greater) => 0, _ => 1, } }

fn printresult(result: MphOrRef) { let solution = result.solution(); let objs = result.objs(); let hcs = result.hardcstrs(); println!("x0: {}, x1: {}", solution[0], solution[1]); println!("f1: {}, f2: {}, AVG: {}", objs[0], objs[1], result.objs_avg()); println!("g1: {}, g2: {}", hcs[0], hcs[1]); println!(); }

[tokio::main] // Or any other runtime

async fn main() { let mut problem = Mph::withcapacity( MphDefinitionsBuilder::default() .name("Binh and Korn") .pushhardcstr(g1 as fn(&Solution) -> usize) .pushhardcstr(g2) .pushobj((ObjDirection::Min, f1 as fn(&Solution) -> f64)) .pushobj((ObjDirection::Min, f2)) .solutiondomain([0.0..=5.0, 0.0..=3.0]) .build(), 500, );

let facade = OptFacadeBuilder::default() .maxiterations(50) .opthooks(()) .stagnationpercentage(Pct::frompercent(2)) .stagnation_threshold(10) .build();

let spea2 = Spea2::new( Pct::frompercent(50), GeneticAlgorithmParamsBuilder::default() .crossover(MultiPoint::new(1, Pct::frompercent(70))) .matingselection(Tournament::new(10, ParetoComparator::default())) .mutation(RandomDomainAssignments::new(1, Pct::frompercent(30))) .build(), &problem, ParetoComparator::default(), );

facade .initialsolutions(RandomInitialSolutions::default(), &mut problem) .solveproblem_with(&mut problem, spea2).await;

for (resultidx, result) in problem.results().iter().enumerate() { println!("* Result #{} *", resultidx + 1); print_result(result); }

println!(" Best result "); print_result(problem.results().best().unwrap()); } ```

Binh and Korn - Objectives

Solvers

Optional features