MiniSat Rust interface. Solves a boolean satisfiability problem given in conjunctive normal form.
```rust extern crate minisat; use std::iter::once; fn main() { let mut sat = minisat::Solver::new(); let a = sat.newlit(); let b = sat.newlit();
// Solves ((a OR not b) AND b)
sat.add_clause(vec![a, !b]);
sat.add_clause(vec![b]);
match sat.solve() {
Ok(m) => {
assert_eq!(m.value(&a), true);
assert_eq!(m.value(&b), true);
},
Err(()) => panic!("UNSAT"),
}
} ```
This crate compiles the MiniSat sources directly and binds through
the minisat-c-bindings interface.
The low-level C bindings are available through the sys
module.
High-level features ported from satplus:
* Traits for representing non-boolean values in the SAT problem:
* Value trait (ModelValue
)
* Equality trait (ModelEq
)
* Ordering trait (ModelOrd
)
* Symbolic values (Symbolic<V>
)
* Non-negative integers with unary encoding (Unary
)
* Non-negative integers with binary encoding (Binary
)
Graph coloring example: ```rust extern crate minisat; use std::iter::once; use minisat::symbolic::*; fn main() { let mut coloring = minisat::Solver::new();
#[derive(PartialEq, Eq, Debug, PartialOrd, Ord)]
enum Color { Red, Green, Blue };
let n_nodes = 5;
let edges = vec![(0,1),(1,2),(2,3),(3,4),(3,1),(4,0),(4,2)];
let colors = (0..n_nodes)
.map(|_| Symbolic::new(&mut coloring, vec![Color::Red, Color::Green, Color::Blue]))
.collect::<Vec<_>>();
for (n1,n2) in edges {
coloring.not_equal(&colors[n1],&colors[n2]);
}
match coloring.solve() {
Ok(model) => {
for i in 0..n_nodes {
println!("Node {}: {:?}", i, model.value(&colors[i]));
}
},
Err(()) => {
println!("No solution.");
}
}
} ```
Factorization example: ```rust extern crate minisat; use minisat::{, binary::};
fn main() { let mut sat = Solver::new(); let a = Binary::new(&mut sat, 1000); let b = Binary::new(&mut sat, 1000); let c = a.mul(&mut sat, &b); sat.equal(&c, &Binary::constant(36863));
match sat.solve() {
Ok(model) => {
println!("{}*{}=36863", model.value(&a), model.value(&b));
},
Err(()) => {
println!("No solution.");
}
}
} ```
Sudoku solver, based on the article Modern SAT solvers: fast, neat and underused (part 1 of N). It uses the sudoku crate for generating and displaying boards.
```rust extern crate itertools; extern crate sudoku; use itertools::iproduct; use minisat::Solver; use minisat::symbolic::Symbolic; use sudoku::Sudoku;
pub fn solvesudoku(problem: &str) -> Option
for val in 0..9 {
// Rule 1: no row contains duplicate numbers
for x in 0..9 {
s.assert_at_most_one((0..9).map(|y| matrix[9 * y + x].has_value(&val)));
}
// Rule 2: no column contains duplicate numbers
for y in 0..9 {
s.assert_at_most_one((0..9).map(|x| matrix[9 * y + x].has_value(&val)));
}
// Rule 3: no 3x3 box contains duplicate numbers
for (box_x, box_y) in iproduct!((0..9).step_by(3), (0..9).step_by(3)) {
s.assert_at_most_one(
iproduct!(0..3, 0..3)
.map(|(x, y)| matrix[9 * (box_x + x) + (box_y + y)].has_value(&val)),
);
}
}
s.solve().ok().map(|m| {
matrix.into_iter()
.map(|v| format!("{}", m.value(&v) + 1))
.collect()
})
}
fn main() { let puzzle = Sudoku::generateunique(); println!("{}", puzzle.displayblock());
let solution = solve_sudoku(&puzzle.to_str_line()).expect("Unable to solve puzzle");
let solved_puzzle = Sudoku::from_str_line(&solution).expect("Unable to parse puzzle");
println!("{}", solved_puzzle.display_block());
assert!(solved_puzzle.is_solved());
} ```