Rust implementation of multi-index hashing (MIH) for neighbor searches on binary codes in the Hamming space, described in the paper
Norouzi, Punjani, and Fleet, Fast exact search in Hamming space with multi-index hashing, IEEE TPAMI, 36(6):1107– 1119, 2014.
As the benchmark result shows, on 10 million 64-bit codes, mih-rs
can perform top-k searches 19−94 times faster than linear search when k = 1..100.
Two types of neighbor searches: mih-rs provides the two search operations:
Fast and memory-efficient implementation: The data structure is built on sparse hash tables, following the original implementation.
Parameter free: mih-rs automatically sets an optimal parameter of MIH depending on a given database (although you can also set this manually).
```rust use mih_rs::Index;
// Database of codes
let codes: Vec
// Query code let qcode: u64 = 0b1111111111111111111111111111111111111111111111111111111111111111; // #zeros = 0
// Construct the index let index = Index::new(codes).unwrap();
// Find the ids of neighbor codes whose Hamming distances are within 2 let mut searcher = index.rangesearcher(); let answers = searcher.run(qcode, 2); asserteq!(answers, vec![1, 4, 6]);
// Find the ids of the top-4 nearest neighbor codes let mut searcher = index.topksearcher(); let answers = searcher.run(qcode, 4); asserteq!(answers, vec![4, 1, 6, 0]); ```
mih_rs::Index
can be built from a vector of type mih_rs::CodeInt
that is a primitive integer trait supporting a popcount operation.
Currently, this library defines mih_rs::CodeInt
for u8
, u16
, u32
, and u64
.
timeperf_topk.rs
offers the benchmark of top-K search for MIH and LinearSearch algorithms on binary code types u32
and u64
.
The following table shows the result of average search times in milliseconds per query, in the settings:
u32
| Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.01 | 0.02 | 0.07 | 0.38 | | MIH (K=10) | 0.04 | 0.08 | 0.30 | 1.06 | | MIH (K=100) | 0.13 | 0.22 | 1.22 | 4.35 | | LinearSearch | 0.36 | 4.40 | 50.96 | 626.87 |
u64
| Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.10 | 0.36 | 1.46 | 6.7 | | MIH (K=10) | 0.20 | 0.76 | 3.72 | 14.8 | | MIH (K=100) | 0.41 | 1.53 | 7.02 | 33.2 | | LinearSearch | 0.36 | 4.36 | 52.28 | 629.1 |
This library is free software provided under MIT.