Rust implementation of multi-index hashing (MIH) for neighbor searches on binary codes in the Hamming space, described in the paper
Norouzi, Punjani, and Fleet, Fast exact search in Hamming space with multi-index hashing, IEEE TPAMI, 36(6):1107– 1119, 2014.
Two types of neighbor searches: mih-rs provides the two search operations:
Fast and memory-efficient implementation: The data structure is built on sparse hash tables, following the original implementation.
Parameter free: mih-rs automatically sets an optimal parameter of MIH depending on a given database (although you can also set this manually).
```rust use mih_rs::Index;
fn main() { // Database of codes let codes: [u64; 8] = [ 0b1111111111111111111111011111111111111111111111111011101111111111, // #zeros = 3 0b1111111111111111111111111111111101111111111011111111111111111111, // #zeros = 2 0b1111111011011101111111111111111101111111111111111111111111111111, // #zeros = 4 0b1111111111111101111111111111111111111000111111111110001111111110, // #zeros = 8 0b1101111111111111111111111111111111111111111111111111111111111111, // #zeros = 1 0b1111111111111111101111111011111111111111111101001110111111111111, // #zeros = 6 0b1111111111111111111111111111111111101111111111111111011111111111, // #zeros = 2 0b1110110101011011011111111111111101111111111111111000011111111111, // #zeros = 11 ];
// Query code
let qcode: u64 = 0b1111111111111111111111111111111111111111111111111111111111111111;
// Construct the index
let index = Index::new(&codes).unwrap();
// Find the ids of neighbor codes whose Hamming distances are within 2
let answers = index.range_search(qcode, 2);
println!("{:?}", answers); // [1, 4, 6]
// Find the ids of the top-4 nearest neighbor codes
let answers = index.topk_search(qcode, 4);
println!("{:?}", answers); // [4, 1, 6, 0]
} ```
Index
can be built from an array of type CodeInt
that is a primitive integer trait supporting a popcount operation. Currently, this library defines CodeInt
for u8
, u16
, u32
, u64
, and u128
. That is, Index
supports neighbor searches on these binary code types.
timeperf_topk.rs
offers the benchmark of top-K search for MIH and LinearSearch algorithms on binary code types u32
, u64
, and u128
.
The following table shows the result of average search times in milliseconds per query, in the settings:
u32
| Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.01 | 0.02 | 0.07 | 0.38 | | MIH (K=10) | 0.04 | 0.08 | 0.30 | 1.06 | | MIH (K=100) | 0.13 | 0.22 | 1.22 | 4.35 | | LinearSearch | 0.36 | 4.40 | 50.96 | 626.87 |
u64
| Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.10 | 0.36 | 1.46 | 6.7 | | MIH (K=10) | 0.20 | 0.76 | 3.72 | 14.8 | | MIH (K=100) | 0.41 | 1.53 | 7.02 | 33.2 | | LinearSearch | 0.36 | 4.36 | 52.28 | 629.1 |
u128
| Algorithm | N=10,000 | N=100,000 | N=1,000,000 | N=10,000,000 | | ------------ | -------: | --------: | ----------: | -----------: | | MIH (K=1) | 0.57 | 3.24 | 23.7 | 162 | | MIH (K=10) | 0.83 | 4.95 | 42.6 | 323 | | MIH (K=100) | 1.10 | 7.71 | 69.5 | 416 | | LinearSearch | 0.48 | 5.47 | 62.3 | 698 |
This library is free software provided under MIT.