markovr crates.io

Higher-order Markov Chains can have longer memories than your typical Markov Chain, which looks back only 1 element. They are the basic building block for the WaveFunctionCollapse algorithm. A zeroth-order Markov Chain is the equivalent of a weighted die.

Usage

Add this to your Cargo.toml:

toml [dependencies] markovr = {version = "0.2"}

Alternatively, if you don't want to bring in the rand crate into your dependency tree:

toml [dependencies] markovr = {version = "0.2", features = []}

And then, in your program:

```rust extern crate markovr;

pub fn main() { // Create a new, first-order Markov Chain. let mut m = markovr::MarkovChain::new(1, &[]);

// alpha will be our training data.
let alpha: Vec<char> = "abcdefghijklmnopqrstuvwxyz".chars().collect();

// Train the model.
for i in 1..alpha.len() {
    m.train(&[alpha[i - 1]], alpha[i], 1);
}

// Generate values from the model.
let mut last: Option<char> = Some('a');
while last.is_some() {
    print!("{} ", last.unwrap());
    last = m.generate(&[last.unwrap()]);
}
// Prints: a b c d e f g h i j k l m n o p q r s t u v w x y z

// What's the probability that 'z' follows 'y'?
print!("\n{}", m.probability(&[Some('y')], 'z'));
// Prints: 1
// What's the probability that 'z' follows 'a'?
print!("\n{}\n", m.probability(&[Some('a')], 'z'));
// Prints: 0

} ```

If you're looking for a more complex example that uses wavefunction collapsing:

```rust extern crate markovr;

pub fn main() { // Create a new, fourth-order Markov Chain. // We'll keep track of each orthogonal neighbor, // and allow for any one of them to be unknown. let mut m = markovr::MarkovChain::::new(4, &[0, 1, 2, 3]);

let train: Vec<Vec<char>> = "

┏━━━━┳━━━━━━┓ ┏━┳━━┳━━━━━━━━━━┓ ┃ ┃ ┏━┓ ┃ ┃ ┃ ┃ ┃ ┣━━━━╋━╋━╋━━╋━┫ ┃ ┏╋━━━━┓ ┃ ┃ ┃ ┗━┛ ┃ ┃ ┃ ┗╋━━━━┛ ┃ ┗━━━━┻━━━━━━┛ ┗━┻━━┻━━━━━━━━━━┛

" .lines() .map(|c| c.chars().take(32).collect()) .collect();

// Train the model.
for r in 1..(train.len() - 1) {
    let ref row = train[r];
    for c in 1..(row.len() - 1) {
        // Build up a view of the neighbors.
        let neighbors = &[
            train[r - 1][c],
            train[r][c - 1],
            train[r][c + 1],
            train[r + 1][c],
        ];
        m.train(neighbors, train[r][c], 1);
    }
}

// Generate values from the model.
let mut map: [[Option<char>; 16]; 16] = [[None; 16]; 16];
//let mut rand_map : Vec<Vec<char>> = vec!(vec!(&['┏', '━']),vec!(&['┃']));
for r in 1..15 {
    for c in 1..15 {
        let neighbors = &[map[r - 1][c], map[r][c - 1], map[r][c + 1], map[r + 1][c]];

        map[r][c] = m.generate_from_partial(neighbors);
        match map[r][c] {
            Some(c) => print!("{}", c),
            // We saw a case that wasn't in our training data,
            // so print a placeholder.
            None => print!("?"),
        }
    }
    print!("\n");
}
// Prints:
/*
━━━━━━━━━┓  ┃
         ┃  ┗━
      ┏━━╋━━━━
━━┓   ┗━━┛
  ┃   ?━┓?━━━━
━━╋━━━━━┛
  ┗━━━━━━━┓
 ┏?━━━━━━━┛  ┏
━╋━┓      ?━━╋
 ┗━╋━━━━┳━╋━━┻
━━━┻━━┓ ┃ ┃  ?
   ?━━┛ ┃ ┃
   ┏━┓? ┃ ┃ ┏━
 ┏━╋━┛  ┃ ┃ ┗━
    */

} ```