| Language | version |
| -------- | --------------------------------------------------------------------------------------------- |
| Python | |
| Rust |
|
传统机器学习方法(LTP 3)实现的 CWS / POS / NER 算法。
| method | ltp 3.0(c++) | ap(1) | ap(8) | pa | pa-i(0.5) | pa-ii(0.5) | | ------ | ------------ | ----- | ----- | ----- | --------- | ---------- | | cws | 97.83 | 97.93 | 97.67 | 97.90 | 97.90 | 97.93 | | pos | 98.35 | 98.41 | 98.30 | 98.39 | 98.39 | 98.38 | | ner | 94.17 | 94.28 | 93.42 | 94.02 | 94.06 | 93.95 |
```rust use std::fs::File; use apache_avro::Codec; use itertools::multizip; use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format};
fn main() -> Result<(), Box
let words = cws.predict("他叫汤姆去拿外衣。");
let pos = pos.predict(&words);
let ner = ner.predict((&words, &pos));
for (w, p, n) in multizip((words, pos, ner)) {
println!("{}/{}/{}", w, p, n);
}
Ok(())
} ```
| Algorithm | Time(s) | Speed(KB/s) | | -------------- | ------: | ----------: | | Jieba cut | 35.29 | 982.49 | | LTP legacy(1) | 36.33 | 954.08 | | LTP legacy(2) | 19.41 | 1786.08 | | LTP legacy(4) | 10.74 | 3228.71 | | LTP legacy(8) | 7.07 | 4904.05 | | LTP legacy(16) | 5.89 | 5880.19 |
注:括号内为线程数量
| Algorithm | Time(s) | Speed(KB/s) | | -------------- | ------: | ----------: | | LTP legacy(1) | 90.66 | 382.33 | | LTP legacy(2) | 49.43 | 701.23 | | LTP legacy(4) | 27.98 | 1238.76 | | LTP legacy(8) | 20.11 | 1723.72 | | LTP legacy(16) | 16.99 | 2040.26 |
注:括号内为线程数量