CODE SIZE CONTRIBUTORS LAST COMMIT

| Language | version | | -------- | --------------------------------------------------------------------------------------------- | | Python | LTP | | Rust | LTP |

LTP For Rust

传统机器学习方法(LTP 3)实现的 CWS / POS / NER 算法。

| method | ltp 3.0(c++) | ap(1) | ap(8) | pa | pa-i(0.5) | pa-ii(0.5) | | ------ | ------------ | ----- | ----- | ----- | --------- | ---------- | | cws | 97.83 | 97.93 | 97.67 | 97.90 | 97.90 | 97.93 | | pos | 98.35 | 98.41 | 98.30 | 98.39 | 98.39 | 98.38 | | ner | 94.17 | 94.28 | 93.42 | 94.02 | 94.06 | 93.95 |

快速使用

```rust use std::fs::File; use apache_avro::Codec; use itertools::multizip; use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format};

fn main() -> Result<(), Box> { let file = File::open("data/legacy-models/cwsmodel.bin")?; let cws: CWSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/posmodel.bin")?; let pos: POSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?; let file = File::open("data/legacy-models/ner_model.bin")?; let ner: NERModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?;

let words = cws.predict("他叫汤姆去拿外衣。");
let pos = pos.predict(&words);
let ner = ner.predict((&words, &pos));

for (w, p, n) in multizip((words, pos, ner)) {
    println!("{}/{}/{}", w, p, n);
}

Ok(())

} ```

features

Benchmark Compare with Jieba

| Algorithm | Time(s) | Speed(KB/s) | | -------------- | ------: | ----------: | | Jieba cut | 35.29 | 982.49 | | LTP legacy(1) | 36.33 | 954.08 | | LTP legacy(2) | 19.41 | 1786.08 | | LTP legacy(4) | 10.74 | 3228.71 | | LTP legacy(8) | 7.07 | 4904.05 | | LTP legacy(16) | 5.89 | 5880.19 |

注:括号内为线程数量

Benchmark Pipeline

| Algorithm | Time(s) | Speed(KB/s) | | -------------- | ------: | ----------: | | LTP legacy(1) | 90.66 | 382.33 | | LTP legacy(2) | 49.43 | 701.23 | | LTP legacy(4) | 27.98 | 1238.76 | | LTP legacy(8) | 20.11 | 1723.72 | | LTP legacy(16) | 16.99 | 2040.26 |

注:括号内为线程数量