This project provides a mathematical programming modeling library for the Rust language (v1.22+).
An optimization problem (e.g. an integer or linear programme) can be formulated using familiar Rust syntax (see examples), and written into a universal LP model format. This can then be processed by a mixed integer programming solver. Presently supported solvers are; COIN-OR CBC, Gurobi and GLPK.
This project is inspired by COIN-OR PuLP which provides such a library for Python.
These examples present a formulation (in LP model format), and demonstrate the Rust code required to generate this formulation. Code can be found in tests/problems.rs.
``` \ One Problem
Maximize 10 a + 20 b
Subject To c1: 500 a + 1200 b + 1500 c <= 10000 c2: a - b <= 0
Generals a c b
End ```
```rust use lpmodeler::problem::{LpObjective, Problem, LpProblem}; use lpmodeler::operations::{LpOperations}; use lpmodeler::variables::LpInteger; use lpmodeler::solvers::{SolverTrait, CbcSolver};
// Define problem variables let ref a = LpInteger::new("a"); let ref b = LpInteger::new("b"); let ref c = LpInteger::new("c");
// Define problem and objective sense let mut problem = LpProblem::new("One Problem", LpObjective::Maximize);
// Objective Function: Maximize 10a + 20b problem += 10.0 * a + 20.0 * b;
// Constraint: 500a + 1200b + 1500c <= 10000 problem += (500a + 1200b + 1500c).le(10000);
// Constraint: a <= b problem += (a).le(b);
// Specify solver let solver = CbcSolver::new();
// Run optimisation and process output hashmap match solver.run(&problem) { Ok((status, varvalues)) => { println!("Status {:?}", status); for (name, value) in varvalues.iter() { println!("value of {} = {}", name, value); } }, Err(msg) => println!("{}", msg), } ```
To generate the LP file which is shown above:
rust
problem.write_lp("problem.lp")
This more complex formulation programmatically generates the expressions for the objective and constraints.
We wish to maximise the quality of the pairing between a group of men and women, based on their mutual compatibility score. Each man must be assigned to exactly one woman, and vice versa.
| | Abe | Ben | Cam | | --- | --- | --- | --- | | Deb | 50 | 60 | 60 | | Eve | 75 | 95 | 70 | | Fay | 75 | 80 | 80 |
This problem is formulated as an Assignment Problem.
```rust extern crate lp_modeler;
use std::collections::HashMap;
use lpmodeler::dsl::*; use lpmodeler::solvers::{SolverTrait, CbcSolver};
fn main() { // Problem Data let men = vec!["A", "B", "C"]; let women = vec!["D", "E", "F"]; let compatibilityscore: HashMap<(&str, &str),f32> = vec![ (("A", "D"), 50.0), (("A", "E"), 75.0), (("A", "F"), 75.0), (("B", "D"), 60.0), (("B", "E"), 95.0), (("B", "F"), 80.0), (("C", "D"), 60.0), (("C", "E"), 70.0), (("C", "F"), 80.0), ].intoiter().collect();
// Define Problem
let mut problem = LpProblem::new("Matchmaking", LpObjective::Maximize);
// Define Variables
let vars: HashMap<(&str,&str), LpBinary> =
men.iter()
.flat_map(|&m| women.iter()
.map(move |&w| {
let key = (m,w);
let value = LpBinary::new(&format!("{}_{}", m,w));
(key, value)
}))
.collect();
// Define Objective Function
let obj_vec: Vec<LpExpression> = {
vars.iter().map( |(&(m,w), bin)| {
let &coef = compatibility_score.get(&(m, w)).unwrap();
coef * bin
} )
}.collect();
problem += obj_vec.sum();
// Define Constraints
// - constraint 1: Each man must be assigned to exactly one woman
for &m in &men{
problem += sum(&women, |&w| vars.get(&(m,w)).unwrap() ).equal(1);
}
// - constraint 2: Each woman must be assigned to exactly one man
for &w in &women{
problem += sum(&men, |&m| vars.get(&(m,w)).unwrap() ).equal(1);
}
// Run Solver
let solver = CbcSolver::new();
let result = solver.run(&problem);
// Compute final objective function value
// (terminate if error, or assign status & variable values)
assert!(result.is_ok(), result.unwrap_err());
let (solver_status, var_values) = result.unwrap();
let mut obj_value = 0f32;
for (&(m, w), var) in &vars{
let obj_coef = compatibility_score.get(&(m, w)).unwrap();
let var_value = var_values.get(&var.name).unwrap();
obj_value += obj_coef * var_value;
}
// Print output
println!("Status: {:?}", solver_status);
println!("Objective Value: {}", obj_value);
for (var_name, var_value) in &var_values{
let int_var_value = *var_value as u32;
if int_var_value == 1{
println!("{} = {}", var_name, int_var_value);
}
}
} ```
This code computes the objective function value and processes the output to print the chosen pairing of men and women:
Status: Optimal
Objective Value: 230
B_E = 1
C_D = 1
A_F = 1
dsl
moduleuse lp_modeler::dsl::*
is enough to write a systemuse lp_modeler::solvers::*
is always used to choose a solversum()
method for vector of LpExpression
/Into<LpExpression>
instead of lp_sum()
functionAdd a sum()
function used in the form:
rust
problem += sum(&vars, |&v| v * 10.0) ).le(10.0);
3 * (a + b + 2) = 3*a + 3*b + 6
)3 * a * 0 = 0
or 3 + 0 = 3
)