lemon-tree
Famous Lemon Parser Generator, designed as library that builds your parser transparently during cargo build. Uses attributes to describe parser rules.
This crate uses lemon-mint as backend.
Example
You can have several parsers in your project. Each parser must be completely described in one rust file, and #[derive(LemonTree)]
(the start symbol) must appear the last in the file.
```rust
extern crate lemon_tree;
use lemontree::{lemfn, LemonTree};
type Expr = f64;
type Exprs = Vec;
[lemfn("NUM(value)")] pub fn expr1(value: f64) -> Expr {value}
[lemfn("MINUS Expr(a)")] pub fn expr2(a: Expr) -> Expr {-a}
[lemfn("PLUS Expr(a)")] pub fn expr3(a: Expr) -> Expr {a}
[lemfn("Expr(a) PLUS Expr(b)")] pub fn expr4(a: Expr, b: Expr) -> Expr {a + b}
[lemfn("Expr(a) MINUS Expr(b)")] pub fn expr5(a: Expr, b: Expr) -> Expr {a - b}
[lemfn("Expr(a) TIMES Expr(b)")] pub fn expr6(a: Expr, b: Expr) -> Expr {a * b}
[lemfn("Expr(a) DIVIDE Expr(b)")] pub fn expr7(a: Expr, b: Expr) -> Expr {a / b}
[lemfn("PAROPEN Expr(0) PARCLOSE")] pub fn expr8(a: Expr) -> Expr {a}
[lemfn("Expr(item)")] pub fn exprs1(item: Expr) -> Exprs {vec![item]}
[lemfn("Exprs(items) SEMICOLON Expr(item)")] pub fn exprs2(mut items: Exprs, item: Expr) -> Exprs {items.push(item); items}
[derive(LemonTree)]
[lemopt(tokentype="f64", left="PLUS MINUS", left="DIVIDE TIMES", trace=">>")]
[lem("Exprs(exprs) [SEMICOLON]")]
pub struct Program
{ exprs: Exprs,
}
fn parse(parser: &mut ::Parser, mut input: &str) -> Exprs
{ loop
{ input = input.trimstart();
match input.bytes().next()
{ Some(c) => match c
{ b'+' => parser.addtoken(::Token::PLUS, 0.0).unwrap(),
b'-' => parser.addtoken(::Token::MINUS, 0.0).unwrap(),
b'*' => parser.addtoken(::Token::TIMES, 0.0).unwrap(),
b'/' => parser.addtoken(::Token::DIVIDE, 0.0).unwrap(),
b'(' => parser.addtoken(::Token::PAROPEN, 0.0).unwrap(),
b')' => parser.addtoken(::Token::PARCLOSE, 0.0).unwrap(),
b';' => parser.addtoken(::Token::SEMICOLON, 0.0).unwrap(),
b'0' ..= b'9' | b'.' =>
{ let pos = input.bytes().position(|c| !c.isasciidigit() && c!=b'.').unwrapor(input.len());
let value = input[.. pos].parse().unwrap();
parser.addtoken(::Token::NUM, value).unwrap();
input = &input[pos-1 ..];
}
_ => panic!("Invalid token")
}
None =>
{ return parser.end().unwrap().exprs;
}
}
input = &input[1 ..];
}
}
fn main()
{ let mut parser = Program::get_parser(());
assert_eq!(parse(&mut parser, "2 + 2 * 2; (2+2) * 2"), vec![6.0, 8.0]);
assert_eq!(parse(&mut parser, "2 * 2 + 2; (2*2) + 2"), vec![6.0, 6.0]);
assert_eq!(parse(&mut parser, "-1*30"), vec![-30.0]);
assert_eq!(parse(&mut parser, "0--1;"), vec![1.0]);
assert_eq!(parse(&mut parser, "(((0)))"), vec![0.0]);
assert_eq!(parse(&mut parser, "0.123 + 10"), vec![10.123]);
assert_eq!(parse(&mut parser, "0.123 / (1.0-1.0)"), vec![f64::INFINITY]);
}
```
This crate exports 3 symbols: lem_fn
, LemonTree
and LemonTreeNode
.
Need to mark start symbol with #[derive(LemonTree)]
. This automatic derive trait allows to set parser options with #[lem_opt()]
attribute, and parser rules with #[lem()]
attribute.
Symbols other than the start symbol can be declared with module-global functions annotated with #[lem_fn()]
attribute. This attribute must be exported to the current namespace with use lemon_tree::lem_fn
.
Another option is to use LemonTreeNode
:
```rust
use lemontree::{lemfn, LemonTree, LemonTreeNode};
[derive(LemonTreeNode, Debug, PartialEq)]
pub enum Expr
{ #[lem("NUM(0)")] Num(f64),
#[lem("MINUS Expr(0)")] UnaryMinus(Box),
#[lem("PLUS Expr(0)")] UnaryPlus(Box),
#[lem("Expr(0) PLUS Expr(1)")] Plus(Box, Box),
#[lem("Expr(0) MINUS Expr(1)")] Minus(Box, Box),
#[lem("Expr(0) TIMES Expr(1)")] Times(Box, Box),
#[lem("Expr(0) DIVIDE Expr(1)")] Divide(Box, Box),
}
[lemfn("PAROPEN Expr(0) PARCLOSE")] pub fn exprfrom_par(a: Expr) -> Expr {a}
[derive(LemonTreeNode, Debug, PartialEq)]
pub enum Exprs
{ #[lem("Expr(0)")]
Expr(Expr),
#[lem("Exprs(0) SEMICOLON Expr(1)")]
Exprs(Box<Exprs>, Expr),
}
[derive(LemonTree, Debug)]
[lemopt(tokentype="f64", left="PLUS MINUS", left="DIVIDE TIMES")]
[lem("Exprs(exprs) [SEMICOLON]")]
pub struct Program
{ exprs: Vec,
flag: bool,
}
fn parse(parser: &mut ::Parser, mut input: &str) -> Vec
{ loop
{ input = input.trimstart();
match input.bytes().next()
{ Some(c) => match c
{ b'+' => parser.addtoken(::Token::PLUS, 0.0).unwrap(),
b'-' => parser.addtoken(::Token::MINUS, 0.0).unwrap(),
b'*' => parser.addtoken(::Token::TIMES, 0.0).unwrap(),
b'/' => parser.addtoken(::Token::DIVIDE, 0.0).unwrap(),
b'(' => parser.addtoken(::Token::PAROPEN, 0.0).unwrap(),
b')' => parser.addtoken(::Token::PARCLOSE, 0.0).unwrap(),
b';' => parser.addtoken(::Token::SEMICOLON, 0.0).unwrap(),
b'0' ..= b'9' | b'.' =>
{ let pos = input.bytes().position(|c| !c.isasciidigit() && c!=b'.').unwrapor(input.len());
let value = input[.. pos].parse().unwrap();
parser.addtoken(::Token::NUM, value).unwrap();
input = &input[pos-1 ..];
}
_ => panic!("Invalid token")
}
None =>
{ return parser.end().unwrap().exprs;
}
}
input = &input[1 ..];
}
}
fn main()
{ use Expr::*;
let mut parser = Program::get_parser(());
assert_eq!
( parse(&mut parser, "2 + 2 * 2; (2+2) * 2"),
vec!
[ Times
( Box::new(Plus(Box::new(Num(2.0)), Box::new(Num(2.0)))),
Box::new(Num(2.0))
),
Plus
( Box::new(Num(2.0)),
Box::new(Times(Box::new(Num(2.0)), Box::new(Num(2.0))))
)
]
);
}
```
This allows to build syntax trees easily.