iptrie

Crates.io Crates.io License Docs

This crate implements tries dedicated to IP addresses and prefixes lookup.

It provides sets and maps for Ipv4, Ipv6 and both mixed.

Each structure exists in two versions: * a first one based on Patricia trie which can be viewed as a standard map or set
with a lookup operation for finding the longest prefix match * a compressed one based one Level-Compressed trie (LC-Trie), optimized for lookup operation (longest prefix match) but which can’t be modified (planned to do in next releases)

Example

```rust fn main() { let prefixes = [ "1.1.0.0/24", "1.1.1.0/24", "1.1.0.0/20", "1.1.2.0/24" ];

let iter = prefixes.iter().map(|x| x.parse::<Ipv4Prefix>().unwrap());

// a set based on Patricia trie
let trie = Ipv4RTrieSet::from_iter(iter);

// lpm lookup for Ipv4 address
assert_eq!(trie.lookup(&"1.1.1.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.1.0/24");
assert_eq!(trie.lookup(&"1.1.2.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.0.0/20");

// lpm lookup for Ipv4 prefix also works
assert_eq!(trie.lookup(&"1.1.0.0/25".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/24");
assert_eq!(trie.lookup(&"1.1.0.0/21".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/20");


// now, compute the set based on LC-trie
let lctrie = trie.compress();

// lpm lookup for Ipv4 address
assert_eq!(lctrie.lookup(&"1.1.1.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.1.0/24");
assert_eq!(lctrie.lookup(&"1.1.2.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.0.0/20");

// lpm lookup for Ipv4 prefix also works
assert_eq!(lctrie.lookup(&"1.1.0.0/25".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/24");
assert_eq!(lctrie.lookup(&"1.1.0.0/21".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/20");

} ```

Performances

For this crate, we want the highest performance for lookup despite the insertion operation. We made comparison with the crate ipnetworktable-deps-treebitmap identified by IpLookupTable in the next sections.

All these tests were performed on a laptop.

Lookup algorithms

Randomly generated prefixes

We generated one million of random prefixes for Ipv4 and Ipv6 in order to feed the lookup table. Then, we checked the lookup procedure with randomly generated Ip addresses.

| | Ipv4 lookup | Ipv6 lookup | |------------------------------|:-----------:|:-----------:| | IpLookupTable | 50 ns | 165 ns | | Patricia trie (this crate) | 125 ns | 700 ns | | LC-Trie (this crate) | 80 ns | 320 ns |

The lookup table based on tree bitmap is the best choice.

BGP prefixes

But the internet has an internal structure that is not random. So, we use a real BGP table with more than 1M Ipv4 prefixes and more than 175k Ipv6 prefixes. Then, we checked the lookup procedure with randomly generated Ip addresses.

| | Ipv4 lookup | Ipv6 lookup | |------------------------------|:-----------:|:-----------:| | IpLookupTable | 61 ns | 50 ns | | Patricia trie (this crate) | 130 ns | 42 ns | | LC-Trie (this crate) | 47 ns | 24 ns |

This time, the lookup based on LC-Trie has the best performances.