Crates.io Documentation Workflow Workflow dependency status

intersect2d

After watching Philipp Kindermann's excellent sweep-line videos I think I finally understand how this algorithm works.

This is my humble take on an implementation of the segment line intersection sweep-line algorithm. \ \ The library crate also contains a line intersection function.

Code still in development, not ready for any purpose.

Rusty voronoi

Interactive step-by-step example: fish cargo run --example fltk_gui --features console_trace

Most of this crate have been adapted for nalgebra, cgmath, mint and plain vector here. \ This crate will remain geo based.

Intersection function API example: ```rust use intersection2d::{intersect, Intersection}; use geo;

let line1:geo::Line:: = [(100.0,150.),(150.0,100.)].into(); let line2:geo::Line:: = [(100.0,150.),(150.0,100.)].into();

let rv = intersect(&line1, &line2); match _rv { Some(Intersection::Intersection(a)) => panic!("expected an overlap"), Some(Intersection::OverLap(a)) => println!("{:?}", a), None => panic!("expected an overlap"), } // you can also get a single intersection point from the Intersection enum. // Albeit geometrically incorrect, it makes things easy if let Some(rv) =rv { println!("{:?}", _rv.single()); } ```

Sweep-line API example: ```rust use geo; use intersect2d::algorithm::AlgorithmData;

let l = vec![ geo::Line::new( geo::Coordinate { x: 200., y: 200. }, geo::Coordinate { x: 350., y: 300. }, ), geo::Line::new( geo::Coordinate { x: 400., y: 200. }, geo::Coordinate { x: 250., y: 300. }, ), ]; let results = AlgorithmData::::default() .withignoreendpointintersections(false)? .withlines(l.intoiter())? .compute()?; for (p, l) in results.iter() { println!("Intersection @{:?} Involved lines:{:?}", p, l); } ```

Detection of self-intersecting geo::LineString: ```rust let coords = vec![(200., 200.), (300., 300.), (400., 200.), (200., 300.)]; let linestring: geo::LineString = coords.intoiter().collect();

// Obviously this example only makes sense for LinesStrings with many points. // A simple brute force O(n²) intersection test will be faster than this O(log(n)n) // sweep-line algorithm if n is small enough.
let result = AlgorithmData::::default() .withignoreendpointintersections(true)? .withstopatfirstintersection(true)? .withlines(linestring.lines())? .compute()?; for (p, l) in result.iter() { println!("Intersection detected @{:?} Involved lines:{:?}", p, l); } ```

Todo