Huffman compression given a probability distribution over arbitrary symbols.
```rust use std::iter::FromIterator; use std::collections::HashMap; use bitvec::BitVec; use huffmancompress::{CodeBuilder, Book, Tree};
let mut weights = HashMap::new(); weights.insert("CG", 293); weights.insert("AG", 34); weights.insert("AT", 4); weights.insert("CT", 4); weights.insert("TG", 1);
// Construct a Huffman code based on the weights (e.g. counts or relative // frequencies). let (book, tree) = CodeBuilder::from_iter(weights).finish();
// More frequent symbols will be encoded with fewer bits. assert!(book.get("CG").mapor(0, |cg| cg.len()) < book.get("AG").mapor(0, |ag| ag.len()));
// Encode some symbols using the book. let mut buffer = BitVec::new(); let example = vec!["AT", "CG", "AT", "TG", "AG", "CT", "CT", "AG", "CG"]; for symbol in &example { book.encode(&mut buffer, symbol); }
// Decode the symbols using the tree. let decoded: Vec<&str> = tree.decoder(&buffer).collect(); assert_eq!(decoded, example); ```
bit-vec
0.5.Tree::decoder()
to Tree::unbounded_decoder()
to avoid
surprises. A new Tree::decoder()
takes the maximum number of symbols to
decode.Saturating
from num-traits.CodeBuilder
.HashMap
. Thanks
@mernen.K: Ord
instead of K: Hash + Eq
for symbols and switch Book
internals from HashMap
to BTreeMap
.Book
.huffman-compress is dual licensed under the Apache 2.0 and MIT license, at your option.