Hierarchical Navigable Small World Graph for fast ANN search
Here is a recall graph that you can compare to its alternatives:
The above benchmark shows the speed boost this gives for 10-NN, but this datastructure is intended (by me) to be used for fast feature matching in images. When matching features in images, they must satisfy the lowe's ratio, which means that the first match must be significantly better than the second match or there may be ambiguity. For that purpose, here are several 2-NN benchmarks for 256-bit binary descriptors:
Please note that M = 24
is not optimal for the above graph at 10000 items. The default M
on this implementation is 12
, which can be fairly optimal for the 2-NN case.
You might want to know the performance of HNSW and how it changes when you increase the number of nearest neighbors. Here are some graphs of some 50-NN searches with different M
:
Finally, here are some more 10-NN benchmarks to satisfy your curiosity:
You can find benchmarks of HNSW with 256-bit binary features vs linear search on 2-NN with ef
parameter of 24
, M
parameter of 24
(very high recall), and efConstruction
set to 400
here. This compares it against linear search, which is pretty fast in small datasets. This is not really a valid comparison because it is comparing apples to oranges (a linear search which is perfect with an ANN algorithm that is getting worse at recall). However, this benchmark is useful for profiling the code, so I will share its results here. Please use the recall graphs above as the actual point of comparison.
You can also generate recall graphs (native cpu instructions recommended). Use the following to see how:
```bash
RUSTFLAGS="-Ctarget-cpu=native" cargo run --release --example recall_discrete -- --help
RUSTFLAGS="-Ctarget-cpu=native" cargo run --release --example recall -- --help ```
If you don't want to use random data (highly recommended), please use the generate.py
script like so:
```bash
python3 scripts/generate.py akaze 20110929/20110929drive0071extract/image00/data/*.png > data/akaze
python3 scripts/generate.py kaze 20110929/20110929drive0071extract/image00/data/*.png > data/kaze ```
This code ran againt the Kitti dataset 2011_09_29_drive_0071
. You can find that here. Download "[unsynced+unrectified data]". It is a large (4.1 GB) download, so it may take some time.
You can still run the above generation against any dataset you would like if you would like to test its performance on said dataset.
This crate may take a while to compile due to the use of typenum
and generic-array
. If you dislike this, consider contributing to some issues labeled A-const-generics in Rust to help push along the const generics support in the compiler. The recall_discrete
generator is especially time-consuming to build.
This is based on the paper "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs" by Yu. A. Malkov and D. A. Yashunin. This paper builds on the original paper for NSW. There are multiple papers written by the authors on NSW, of which that is the last and most up-to-date.
HNSW is an algorithm that creates layers of NSW graphs where the top layer is least refined and the "zero layer" is the most refined. The graph nodes are items from the search set in all cases and M
edges are chosen by finding the M
nearest-neighbors according to the graph's ANN search. The authors of HSNW probabalistically select which items from the search set to include in each graph layer and below to maintain global connectivity. This is effectively combining the concept of skip lists with NSW.
The authors define some parameters:
M
is the number of nearest-neighbors to connect a new entry to when it is inserted.
M
between 5 and 48.M
.Mmax0
is the maximum M
for the "zero" layer.
M * 2
, which the paper claims is relatively empirically optimal, but makes no mathematical claim.
M0
.Mmax
is the maximum M
for every non-zero layer.
M
.mL
is a parameter the controls the random selection of the max layer an insertion will appear on.
l
that an insertion appears on is -ln(unif(0..1)) * mL
.mL
is chosen to be 1 / ln(M)
.mL
seems to empirically be ideal according to the paper's findings, so this is not exposed to the user.ef
is the number of nearest neighbors to keep in a priority queue while searching.
ef
in this crate.efConstruction
is the ef
to use when searching for nearest neighbors when inserting.
ef
so that the quality of the graph can be improved (closer to the Delaunay graph).
100
on a 10 million SIFT dataset to get good quality.40
on a 200 million SIFT dataset still gets virtually the same results as 500
.100
if insertion performance is not a concern.
This is in no way a direct copy or reimplementation of the original implementation. This was made purely based on the paper without reference to the original headers. The paper is very well written and easy to understand, with some minor exceptions, so I never needed to refer to the original headers as I thought I would when I began working on this. Thank you to the authors for your valuble contribution.
Please visit the Rust Photogrammetry Discord.