good_lp

A Linear Programming modeler that is easy to use, performant with large problems, and well-typed.

documentation MIT license

```rust use goodlp::{variables, variable, coincbc, SolverModel, Solution, contraint};

fn main() { let mut vars = variables!(); let a = vars.add(variable().max(1)); let b = vars.add(variable().min(2).max(4)); let solution = vars.maximise(10 * (a - b / 5) - b) .using(coin_cbc) .with(constraint!(a + 2 <= b)) .with(constraint!(1 + a >= 4 - b)) .solve()?; println!("a={} b={}", solution.value(a), solution.value(b)); println!("a + b = {}", solution.eval(a + b)); } ```

Features and limitations

Contributing

Pull requests are welcome ! If you need any of the features mentioned above, get in touch. Also, do not hesitate to open issues to discuss the implementation.

Alternatives

If you need non-linear programming or integer variables, you can use lp-modeler. However, it is currently very slow with large problems.

You can also directly use the underlying solver libraries, such as coin_cbc or minilp if you don't need a way to express your objective function and constraints using an idiomatic rust syntax.

Usage examples

You can find a resource allocation problem example in resource_allocation_problem.rs.

Solvers

This library offers an abstraction over multiple solvers. By default, it uses cbc, but you can also activate other solvers using cargo features.

cbc

Used by default, performant, but requires to have a C compiler and the cbc C library installed.

In ubuntu, you can install it with:

sudo apt-get install coinor-cbc coinor-libcbc-dev

In MacOS, using homebrew :

brew install cbc

minilp

minilp is a pure rust solver, which means it works out of the box without installing anything else.

You can activate it with :

toml good_lp = { version = "0.3", features = ["minilp"], default-features = false }

Then use minilp instead of coin_cbc in your code:

```rust use good_lp::minilp;

fn optimize(vars: ProblemVariables) { vars.maximise(objective).using(minilp); } ```

Minilp is written in pure rust, and performs poorly when compiled in debug mode. Be sure to compile your code in --release mode when solving large problems.

lpsolve

lp_solve is a free (LGPL) linear (integer) programming solver written in C and based on the revised simplex method.

toml good_lp = { version = "0.3", features = ["lpsolve"], default-features = false }

good_lp uses the lpsolve crate to call lpsolve. You will need a C compiler, but you won't have to install any additional library.

License

This library is published under the MIT license.