This library provides a simple framework to implement genetic algorithms (GA) with Rust.
This version uses traits for generic implementations.
These traits are within the traits
module:
GeneT
: This trait must be implemented on your own gene representation.
new()
: This is the constructor function.get_id()
: This function must return the id of the gene.GenotypeT
: This trait must be implemented on your own genotype representation.
new()
: This is the constructor function.get_dna()
: Must return the vector of genes (GeneT
).get_dna_mut()
: Must return the mutable vector of genes (GeneT
), manily for the mutation operator.calculate_phenotype()
: This function must calculate the fitness of the indivudual (or the genotype) in f64.get_phenotype()
: Returns the fitness previously calculated by calculate_phenotype()
.Within the module operations
we have the following operators:
In genetic algorithms, operators are applied over a population of individuals, and over a set of rules (not yet implemented).
Within the population
module, Population
structure will define the population.
Because genetic algorithms run over different generations, in this library there is a start
function within module ga
that facilitates the process.
This function will need the GaConfiguration
structure which contains the operators to use, the maximum number of generations, and the problem solver (Maximization or Minimization), and the Population
structure, which is in the population
module.
A simple example of use could be the minimization of a genotype whose gene has only an id.
Use the traits.
use use genetic_algorithms::{ga::{GaConfiguration, ProblemSolving, run}, operations::{Selection, Crossover, Mutation, Survivor}, population::Population, traits::GenotypeT};
Define the gene structure.
```
pub struct Gene{ pub id: i32, } impl GeneT for Gene{ fn new()->Gene{ return Gene{id: -1}; } fn get_id(&self) -> &i32{ return &self.id; } } ```
Define the genotype structure, and the phenotype calculation.
```
pub struct Genotype
self.phenotype = 0.0;
let mut position = 0;
for i in &self.dna{
let phenotype = f64::from(i.get_id()*position);
self.phenotype += phenotype;
position += 1;
}
}
fn new() -> Self {
return Genotype{
dna: Vec::new(),
phenotype: 0.0,
}
}
} ```
Define the configuration of the GA.
let configuration = GaConfiguration{
problem_solving: ProblemSolving::Maximization,
max_generations: 100,
selection: Selection::Random,
crossover: Crossover::Cycle,
mutation: Mutation::Swap,
survivor: Survivor::Fitness,
};
Define the DNA, the individuals and the population.
``` let dna1 = vec![Gene{id:1}, Gene{id:2}, Gene{id:3}, Gene{id:4}]; let dna2 = vec![Gene{id:2}, Gene{id:3}, Gene{id:4}, Gene{id:1}]; let dna3 = vec![Gene{id:3}, Gene{id:4}, Gene{id:1}, Gene{id:2}]; let dna4 = vec![Gene{id:4}, Gene{id:1}, Gene{id:2}, Gene{id:3}]; let dna5 = vec![Gene{id:2}, Gene{id:1}, Gene{id:3}, Gene{id:4}]; let dna6 = vec![Gene{id:1}, Gene{id:3}, Gene{id:4}, Gene{id:2}]; let dna7 = vec![Gene{id:3}, Gene{id:4}, Gene{id:2}, Gene{id:1}]; let dna8 = vec![Gene{id:4}, Gene{id:2}, Gene{id:1}, Gene{id:3}]; let dna9 = vec![Gene{id:2}, Gene{id:1}, Gene{id:4}, Gene{id:3}]; let dna10 = vec![Gene{id:1}, Gene{id:4}, Gene{id:3}, Gene{id:2}];
let individuals = vec![Genotype{dna: dna1, phenotype: 1.0}, Genotype{dna: dna2, phenotype: 2.0}, Genotype{dna: dna3, phenotype: 3.0}, Genotype{dna: dna4, phenotype: 4.0}, Genotype{dna: dna5, phenotype: 5.0}, Genotype{dna: dna6, phenotype: 6.0}, Genotype{dna: dna7, phenotype: 7.0}, Genotype{dna: dna8, phenotype: 8.0}, Genotype{dna: dna9, phenotype: 9.0}, Genotype{dna: dna10, phenotype: 10.0}];
let mut population = Population::new(individuals);
```
Finally, run the GA.
population = run(population, configuration);
Add this to your Cargo.toml
:
toml
[dependencies]
genetic_algorithms = "0.1.1"