A genetic algorithm implementation for Rust. Inspired by the book Genetic Algorithms in Elixir
There are three main elements to this approach: * The Genotype (the search space) * The Fitness function (the search goal) * The Evolve strategy (the search strategy)
See crate.io
```rust use genetic_algorithm::evolve::prelude::*;
// the search space let genotype = BinaryGenotype::builder() // boolean genes .withgenesize(100) // 100 of them .build() .unwrap();
println!("{}", genotype);
// the search goal to optimize towards (maximize or minimize)
pub struct CountTrue;
impl Fitness for CountTrue {
type Genotype = BinaryGenotype;
fn callforchromosome(&mut self, chromosome: &Chromosome
// the search strategy let mut rng = rand::threadrng(); // a randomness provider implementing Trait rand::Rng let evolve = Evolve::builder() .withgenotype(genotype) .withpopulationsize(100) // evolve with 100 chromosomes .withtargetfitnessscore(100) // goal is 100 times true in the best chromosome .withfitness(CountTrue) // count the number of true values in the chromosomes .withcrossover(CrossoverAll(true)) // crossover all individual genes between 2 chromosomes for offspring .withmutate(MutateOnce(0.2)) // mutate a single gene with a 20% probability per chromosome .with_compete(CompeteElite) // sort the chromosomes by fitness to determine crossover order .build() .unwrap() .call(&mut rng);
println!("{}", evolve); ```
Run with cargo run --example [EXAMPLE_BASENAME] --release
UniqueDiscreteGenotype<u8>
with a 64x64 chess board setup and custom NQueensFitness
fitnessDiscreteGenotype<(weight, value)>
with a custom KnapsackFitness(weight_limit)
fitnessDiscreteGenotype<u8>
100 monkeys randomly typing characters in a loopRun tests with cargo test
Implemented using criterion. Run benchmarks with cargo bench
Implemented using criterion and pprof.
Find the flamegraph in: ./target/criterion/profile_evolve_binary/profile/flamegraph.svg
Run with cargo run --example profile_evolve_binary --release -- --bench --profile-time 5