A Rust library for operations on finite field, featuring:
Add this to your Cargo.toml:
[dependencies]
galois_field = "0.1.3"
use galois_field::*;
fn main() {
let char: u32 = 2;
let n = 4;
let primitive_polynomial = Polynomial::get_primitive_polynomial(char, n);
let x:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,1] = x -> 2 over GF(2^4)
};
let y:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,0,1,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,0,1,1] = x^3 + x^2 -> 12 over GF(2^4)
};
println!("x + y = {:?}", (x.clone() + y.clone()).element);
println!("x - y = {:?}", (x.clone() - y.clone()).element);
println!("x * y = {:?}", (x.clone() * y.clone()).element);
println!("x / y = {:?}", (x.clone() / y.clone()).element);
}
use galois_field::*;
fn main(){
// consider GF(2^4)
let char: u32 = 2;
let n = 4;
let primitive_polynomial = Polynomial::get_primitive_polynomial(char, n);
let x:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,1] = x -> 2 over GF(2^4)
};
let y:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,0,1,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,0,1,1] = x^3 + x^2 -> 12 over GF(2^4)
};
println!("x + y = {:?}", (x.clone() + y.clone()).element);
println!("x - y = {:?}", (x.clone() - y.clone()).element);
println!("x * y = {:?}", (x.clone() * y.clone()).element);
println!("x / y = {:?}", (x.clone() / y.clone()).element);
}
use galois_field::*;
fn main() {
// character
let char: u32 = 2;
let element0:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:0} // 0 in F_5
};
let element1:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:1} // 1 in F_5
};
let f: Polynomial = Polynomial {
coef: vec![element1.clone(),element0.clone(),element0.clone(),element0.clone(),element1.clone()]
};
let g: Polynomial = Polynomial {
coef: vec![element1.clone(),element0.clone(),element0.clone(),element1.clone(),element1.clone()]
};
println!("f + g = {:?}", (f.clone()+g.clone()).coef);
println!("f - g = {:?}", (f.clone()-g.clone()).coef);
println!("f * g = {:?}", (f.clone()*g.clone()).coef);
println!("f / g = {:?}", (f.clone()/g.clone()).coef);
println!("f % g = {:?}", (f.clone()%g.clone()).coef);
}
Same as above