CLI curve fitting tool. Parameterise an equation from a CSV dataset.
fitme
is primarily a CLI tool, and this README details the CLI use.If one is wanting to use
fitme
as a library, please see the API docs.
```plaintext
fitme y "m * x + c" tests/file1.csv ────────────────────────────────────────────── Parameter Value Standard Error t-value ══════════════════════════════════════════════ c 3.209 0.013 230.3 ────────────────────────────────────────────── m 1.770 0.011 149.0 ────────────────────────────────────────────── Number of observations: 10.0 Root Mean Squared Residual error: 0.043 R-sq Adjusted: 0.999 ```
Currently, only installation from source is supported:
```plaintext
cargo install fitme
cargo install --git https://github.com/kdr-aus/fitme ```
fitme --help
for detailed help.fitme
requires just two arguments, the target column to fit against, and the mathematical
expression. The third optional argument specifies the file to read the CSV from.
fitme
uses a least-squares fitting approach.
Let's fit a linear regression to the following data:
| y | x | | --- | --- | | 1.9000429E-01 | -1.7237128E+00 | | 6.5807428E+00 | 1.8712276E+00 | | 1.4582725E+00 | -9.6608055E-01 | | 2.7270851E+00 | -2.8394297E-01 | | 5.5969253E+00 | 1.3416969E+00 | | 5.6249280E+00 | 1.3757038E+00 | | 0.787615 | -1.3703436E+00 | | 3.2599759E+00 | 4.2581975E-02 | | 2.9771762E+00 | -1.4970151E-01 | | 4.5936475E+00 | 8.2065094E-01 |
Equation: y = m * x + c
Here the:
- target: y
- variables: x
- parameters: m
, c
To run a fit, simply use fitme y "m * x + c" test-file.csv
:
```plaintext
fitme y "m * x + c" test-file.csv ────────────────────────────────────────────── Parameter Value Standard Error t-value ══════════════════════════════════════════════ c 3.209 0.013 230.3 ────────────────────────────────────────────── m 1.770 0.011 149.0 ────────────────────────────────────────────── Number of observations: 10.0 Root Mean Squared Residual error: 0.043 R-sq Adjusted: 0.999 ```
Notice that fitme
will automatically match column names in the equation, binding them as
variables. Unmatched variables become parameters.
fitme
is useful for fitting multiple least squares linear regressions:
```plaintext
fitme sepalLength "a * petalLength + b * sepalWidth + c * petalWidth + d" iris.csv ─────────────────────────────────────────────── Parameter Value Standard Error t-value ═══════════════════════════════════════════════ a 0.711 0.056 12.51 ─────────────────────────────────────────────── b 0.654 0.066 9.788 ─────────────────────────────────────────────── c -0.562 0.127 -4.410 ─────────────────────────────────────────────── d 1.845 0.251 7.342 ─────────────────────────────────────────────── Number of observations: 150.0 Root Mean Squared Residual error: 0.314 R-sq Adjusted: 0.855 ```
Alter the output via the --out
switch.
```plaintext
fitme y "m * x + c" file1.csv -o=csv -n Parameter,Value,Standard Error,t-value m,1.7709542029456211,0.011883297834310212,149.02884936809457 c,3.2099657167997013,0.013936863525869892,230.32195951702457 ```
```plaintext
fitme y "m * x + c" file1.csv -o=md -n | Parameter | Value | Standard Error | t-value | |-----------|-------|----------------|---------| | c | 3.209 | 0.013 | 230.3 | | m | 1.770 | 0.011 | 149.0 | ```
```plaintext
fitme y "m * x + c" file1.csv -o=json -n {"parameternames":["m","c"],"parametervalues":[1.7709542029456211,3.2099657167997013],"n":10,"xerrs":[0.011883297834310212,0.013936863525869892],"rmsr":0.04392493014188053,"rsq":0.9995948974725735,"tvals":[149.02884936809457,230.32195951702457]} ```
+,-,*,/
%
: remainder^
: powerpi, e
sqrt(), abs()
exp(), ln(), log()
sin(), cos(), tan()
sinh(), cosh(), tanh()
floor(), ceil(), round()
🔬 If you need more math support, please raise an issue.
y = Ax + B
y, x
A, B
```bash
fitme y "Ax + B" ```
y = P0 * x0 + P1 * x1 + ... + Pn * xn + C
y, x0, x1, ... , xn
P0, P1, ... , Pn, C
```bash
fitme y "P0 * x0 + P1 * x1 + ... + Pn * xn + C" ```
The goal is to fit to a CDF, so the input CSV will have P as the probability [0,1], and x as the variable.
$$P = {1\over2} \bigg\lbrack {1 + erf \Big( {{x-mu}\over{\sigma^2\sqrt2}} \Big)}\bigg\rbrack$$
We can approximate the erf
function with:
$$erf(x) \approx \tanh \big( {\sqrt{\pi}\log(2)x} \big)$$
So:
math
P = {1\over2} \bigg\lbrack
{1 + \tanh \Big(
{{(x-\mu)\sqrt\pi\log(2)}\over{\sigma^2\sqrt2}}
\Big)}
\bigg\rbrack
This transforms into the expression: ```plaintext 0.5 * (1 + tanh(((x - Mean) * sqrt(pi) * log(2)) / (Stdev^2 * sqrt(2))))
Parameters: Mean, Stdev Variables: x ```
And to fit:
```bash
fitme P "0.5 * (1 + tanh(((x - Mean) * sqrt(pi) * log(2)) / (Stdev^2 * sqrt(2))))" ```