![Latest Version] ![Travis-CI Status] ![docs] ![MIT]
You trained a non-sparse RBF-C-SVM using libSVM, now you want the highest possible performance during (real-time) classification, like games or VR.
unsafe
code ;)Train with libSVM (e.g., using the tool svm-train
), then classify with ffsvm-rust
.
From Rust:
```rust // Load model file / SVM. let modelstr: &str = includestr!("model.libsvm"); let model = ModelFile::tryfrom(modelstr)?; let csvm = RbfCSVM::try_from(&model)?;
// Produce problem we want to classify. let mut problem = Problem::from(&csvm);
// Set features problem.featuresmut().clonefrom_slice(&[ 0.3093766, 0.0, 0.0, 0.0, 0.0, 0.1764706, 0.0, 0.0, 1.0, 0.1137485, ]);
// Can be trivially parallelized (e.g., with Rayon) ... csvm.predict_value(&mut problem);
// Results should match libSVM assert_eq!(42, problem.label); ```
From C / FFI:
Please see FFSVM-FFI
Classification time vs. libSVM.
Performance milestones during development.