A [Fenwick tree][wiki] or binary indexed tree/bit indexed tree is a data structure
that supports the following two operations efficiently over an array of numbers a[0..n]
:
a[0] + a[1] + ... + a[i]
a[i] += delta
With a naïve implementation, only one of the operations can be made to have constant time
complexity while the other one has to be linear. With Fenwick tree, both take only O(log(N))
.
Use the array
module for operations on a 1D Fenwick tree:
```rust use fenwick::array::{update, prefix_sum};
let fw = &mut [0i32; 10]; // backing array of Fenwick tree (NOT original array!) asserteq!(prefixsum(fw, 0), 0); asserteq!(prefixsum(fw, 9), 0); update(fw, 0, 3); // original array: [3, 0, 0, 0, 0, 0, 0, 0, 0, 0] asserteq!(prefixsum(fw, 0), 3); asserteq!(prefixsum(fw, 9), 3); update(fw, 5, 9); // original array: [3, 0, 0, 0, 0, 9, 0, 0, 0, 0] asserteq!(prefixsum(fw, 4), 3); asserteq!(prefixsum(fw, 5), 12); asserteq!(prefixsum(fw, 6), 12); update(fw, 4, -5); // original array: [3, 0, 0, 0, -5, 9, 0, 0, 0, 0] asserteq!(prefixsum(fw, 4), -2); asserteq!(prefixsum(fw, 5), 7); update(fw, 0, -2); // original array: [1, 0, 0, 0, -5, 9, 0, 0, 0, 0] asserteq!(prefixsum(fw, 4), -4); asserteq!(prefixsum(fw, 5), 5); ```
Use the index
module to implement multi-dimensional Fenwick trees:
```rust use fenwick::index::zero_based::{down, up};
fn update(i: usize, j: usize, k: usize, delta: i32) { for ii in up(i, MAX) { for jj in up(j, MAX) { for kk in up(k, MAX) { /* increment 3D array at [ii, jj, kk] by delta */ } } } }
fn prefix_sum(i: usize, j: usize, k: usize) -> i32 { let mut sum = 0i32; for ii in down(i) { for jj in down(j) { for kk in down(k) { /* increment sum by 3D array at [ii, jj, kk] */ } } } sum } ```