dply is a command line tool for viewing, querying, and writing csv and parquet files, inspired by dplyr and powered by DataFusion.

Usage overview

A dply pipeline consists of a number of functions to read, transform, or write Parquet or CSV files.

Conversions between CSV, JSON, and Parquet files

The functions csv, json and parquet read and write data for their respective formats. The following two steps pipeline converts a Parquet file to JSON:

$ dply -c 'parquet("nyctaxi.parquet") | json("nyctaxi.json")'

We can use a select step if we want to convert a subset of the columns:

$ dply -c 'parquet("nyctaxi.parquet") | select(ends_with("time"), payment_type) | json("nyctaxi.json")' $ head -2 nyctaxi.json| jq { "payment_type": "Credit card", "tpep_dropoff_datetime": "2022-11-22T19:45:53", "tpep_pickup_datetime": "2022-11-22T19:27:01" } { "payment_type": "Cash", "tpep_dropoff_datetime": "2022-11-27T16:50:06", "tpep_pickup_datetime": "2022-11-27T16:43:26" }

Extracting nested fields from nested JSON

To extract a nested field in a JSON file we can use the field function in a mutate step. The following example extracts the sha from the list of commits in the payload object:

$ dply -c 'json("./tests/data/github.json") | mutate(commits = field(payload, commits)) | unnest(commits) | mutate(sha = field(commits, sha)) | select(sha) | show()' shape: (4, 1) ┌──────────────────────────────────────────┐ │ sha │ │ --- │ │ str │ ╞══════════════════════════════════════════╡ │ a02be18dc2a0faa0faec14f50c8b190ca0b50034 │ │ ac97a4ab3a4d86f61a6ba167c06cd8813b470867 │ │ null │ │ e4b233f1323a4b4e4461ed1aad31d20a7fbf0db4 │ └──────────────────────────────────────────┘

Complex JSON files can be converted to Parquet for faster query processing:

$ dply -c 'json("github.json") | parquet("github.parquet")'

Grouping, sorting columns, and saving results to a file

The following pipeline reads a Parquet file[^1], group rows by payment_type, computes the minimum, mean, and maximum fare for each payment type, saves the result to fares.csv CSV file, and shows the result:

$ dply -c 'parquet("nyctaxi.parquet") | group_by(payment_type) | summarize( min_price = min(total_amount), mean_price = mean(total_amount), max_price = max(total_amount) ) | arrange(payment_type) | csv("fares.csv") | show()' shape: (5, 4) ┌──────────────┬───────────┬────────────┬───────────┐ │ payment_type ┆ min_price ┆ mean_price ┆ max_price │ │ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ f64 ┆ f64 ┆ f64 │ ╞══════════════╪═══════════╪════════════╪═══════════╡ │ Cash ┆ -61.85 ┆ 18.07 ┆ 86.55 │ │ Credit card ┆ 4.56 ┆ 22.969491 ┆ 324.72 │ │ Dispute ┆ -55.6 ┆ -0.145161 ┆ 54.05 │ │ No charge ┆ -16.3 ┆ 0.086667 ┆ 19.8 │ │ Unknown ┆ 9.96 ┆ 28.893333 ┆ 85.02 │ └──────────────┴───────────┴────────────┴───────────┘

Running dply without any parameter starts the interactive client:

Dply demo

250 rows parquet file sampled from the NYC trip record data.

Supported functions

dply supports the following functions:

more examples can be found in the tests folder.

Installation

Binaries generated by the release Github action for Linux, macOS (x86), and Windows are available in the releases page.

You can also install dply using Cargo:

bash cargo install dply

or by building it from this repository:

bash git clone https://github.com/vincev/dply-rs cd dply-rs cargo install --path .