:fire: Recommendations for Rust using collaborative filtering
Add this line to your application’s Cargo.toml
under [dependencies]
:
toml
discorec = "0.1"
Prep your data in the format user_id, item_id, value
```rust use discorec::{Dataset, Recommender};
let mut data = Dataset::new(); data.push("usera", "itema", 5.0); data.push("usera", "itemb", 3.5); data.push("userb", "itema", 4.0); ```
IDs can be integers, strings, or any other hashable data type
rust
data.push(1, "item_a".to_string(), 5.0);
If users rate items directly, this is known as explicit feedback. Fit the recommender with:
rust
let recommender = Recommender::fit_explicit(&data);
If users don’t rate items directly (for instance, they’re purchasing items or reading posts), this is known as implicit feedback. Use 1.0
or a value like number of purchases or page views for the dataset, and fit the recommender with:
rust
let recommender = Recommender::fit_implicit(&data);
Get user-based recommendations - “users like you also liked”
rust
recommender.user_recs(&user_id, 5);
Get item-based recommendations - “users who liked this item also liked”
rust
recommender.item_recs(&item_id, 5);
Get predicted ratings for a specific user and item
rust
recommender.predict(&user_id, &item_id);
Get similar users
rust
recommender.similar_users(&user_id, 5);
Download the MovieLens 100K dataset.
Add these lines to your application’s Cargo.toml
under [dependencies]
:
toml
csv = "1"
serde = { version = "1", features = ["derive"] }
And use:
```rust use csv::ReaderBuilder; use discorec::{Dataset, RecommenderBuilder}; use serde::Deserialize; use std::fs::File;
struct Row { userid: i32, itemid: i32, rating: f32, time: i32, }
fn main() { let mut trainset = Dataset::new(); let mut validset = Dataset::new();
let file = File::open("u.data").unwrap();
let mut rdr = ReaderBuilder::new()
.has_headers(false)
.delimiter(b'\t')
.from_reader(file);
for (i, record) in rdr.records().enumerate() {
let row: Row = record.unwrap().deserialize(None).unwrap();
let dataset = if i < 80000 { &mut train_set } else { &mut valid_set };
dataset.push(row.user_id, row.item_id, row.rating);
}
let recommender = RecommenderBuilder::new()
.factors(20)
.fit_explicit(&train_set);
println!("RMSE: {:?}", recommender.rmse(&valid_set));
} ```
Save recommendations to your database. Alternatively, you can store only the factors and use a library like pgvector-rust.
Disco uses high-performance matrix factorization.
Specify the number of factors and iterations
rust
RecommenderBuilder::new()
.factors(8)
.iterations(20)
.fit_explicit(&train_set);
Pass a callback to show progress
rust
RecommenderBuilder::new()
.callback(|info| println!("{:?}", info))
.fit_explicit(&train_set);
Note: train_loss
and valid_loss
are not available for implicit feedback
Pass a validation set with explicit feedback
rust
RecommenderBuilder::new()
.callback(|info| println!("{:?}", info))
.fit_eval_explicit(&train_set, &valid_set);
The loss function is RMSE
Get ids
rust
recommender.user_ids();
recommender.item_ids();
Get the global mean
rust
recommender.global_mean();
Get factors
rust
recommender.user_factors(&user_id);
recommender.item_factors(&item_id);
View the changelog
Everyone is encouraged to help improve this project. Here are a few ways you can help:
To get started with development:
sh
git clone https://github.com/ankane/disco-rust.git
cd disco-rust
cargo test