This crate implements feedforward-neural Networks in rust.
A basix XOR training example might look like this: ```rust fn main() -> Result<()>{ // Build the input and label arrays let inputs = array![ [0., 0.], [0., 1.], [1., 0.], [1., 1.], ]; let labels = array![[0.], [1.], [1.], [0.]];
let dataset = Dataset::new(inputs, labels, 1., BatchSize::One)?;
let loss_fn = Loss::MSE;
// Build the neural net
let mut net = NeuralNetworkBuilder::new()
.learning_rate(0.3)
.momentum(0.1)
.add_layer(Layer::new(2, 3).activation(Activation::Sigmoid))
.add_layer(Layer::new(3, 3).activation(Activation::Sigmoid))
.add_layer(Layer::new(3, 1).activation(Activation::Sigmoid));
// train the network
for epoch in 0..11000 {
for (samples, labels) in dataset.iter_train().into_iter() {
let _out = net.forward(&samples);
if epoch % 100 == 0 {
println!("training epoch {}", epoch);
println!(" Loss: {}\n", &loss_fn.compute(&_out, &labels).mean().unwrap());
}
net.backprop(samples, labels, &loss_fn);
}
}
// evaluate the net
let mut total_loss: f64 = 0.;
// should ofc be iter_test but this dataset is kinda minimalistic
let test_iter = dataset.iter_train();
let num_test_samples = test_iter.num_batches * test_iter.batch_size;
for (sample, label) in test_iter {
let out = net.forward(&sample);
total_loss += loss_fn.compute(&out, &label).sum();
println!("{} == {}", out.map(|&x| x.round()), label);
}
println!("Mean loss over {} test samples: {:.2}", num_test_samples, total_loss / num_test_samples as f64);
Ok(())
} ``` For more usage examples, please take a look at /examples
serde
featureSome stuff i found to be quite helpful if you are interested in understanding the math behind neural networks * Very nice article by Michael Nielsen