Machine learning tools for Rust
elocolburn@comcast.net
Add the following to your Cargo.toml
file
darjeeling = "0.2.1"
```rust use core::{panic}; use darjeeling::{ categorize::NeuralNetwork, tests, input::Input, series::Series, dataframe::{DataFrame, Point}}; use std::{io::{BufReader, BufRead}, fs};
/// This program function would read from a file containing all possible inputs to a binary logic gate, and all the correct answers.
/// Then it would train a model with 1 hidden layer.
/// 2 nodes in its input layer, because there are two inputs.
/// 2 Nodes for its output layer because there are two possible answers(the "brighter" one is selected a the chosen answer)
/// and 2 nodes in its hidden layer, because I like patterns.
/// If this doesn't work, check the tests.ts source code for verified working code.
/// Hint: Try fiddling with the learning rate you're using if things aren't working properly
/// Different problems work differently with different learning rates, although I recommend one of 0.5 to start.m
fn train_test_xor() {
let learning_rate:f32 = 1.0;
let categories = NeuralNetwork::categories_format(vec!["0","1"]);
let data = xor_file();
let model_name: String = train_network_xor(data.clone(), categories.clone(), learning_rate).unwrap();
test_network_xor(data, categories, model_name)
}
fn train_network_xor(mut data:Vec<Input>, categories: Vec<String>, learning_rate: f32) -> Option<String> {
let input_num: i32 = 2;
let hidden_num: i32 = 2;
let answer_num: i32 = 2;
let hidden_layers: i32 = 1;
let mut net = NeuralNetwork::new(input_num, hidden_num, answer_num, hidden_layers);
match net.learn(&mut data, categories, learning_rate) {
Some(name) => Some(name),
None => None
}
}
fn test_network_xor(data: Vec<Input>, categories: Vec<String>, model_name: String) {
NeuralNetwork::test(data, categories, model_name);
}
// This isn't very important, this just reads the file you want to and format it as Inputs
fn xor_file() -> Vec<Input> {
let file = match fs::File::open("training_data/xor.txt") {
Ok(file) => file,
Err(error) => panic!("Panic opening the file: {:?}", error)
};
let reader = BufReader::new(file);
let mut inputs: Vec<Input> = vec![];
for l in reader.lines() {
let line = match l {
Ok(line) => line,
Err(error) => panic!("{:?}", error)
};
let init_inputs: Vec<&str> = line.split(";").collect();
let float_inputs: Vec<f32> = vec![init_inputs[0].split(" ").collect::<Vec<&str>>()[0].parse().unwrap(), init_inputs[0].split(" ").collect::<Vec<&str>>()[1].parse().unwrap()];
let input: Input = Input { inputs: float_inputs, answer:init_inputs.get(init_inputs.len()-1).as_ref().unwrap().to_owned().to_string() };
inputs.push(input);
}
inputs
}
/// This program creates a test dataframe and series, then performs several test actions on them.
fn dataframe_add_sub() {
let mut frame: DataFrame<i32> = quick_frame();
frame.display();
frame.add_row("Label!",
Point::point_vector(
frame.get_cols_len() - 1 as usize,
vec![10,11,12]
)
);
frame.display();
frame.delete_row("Label!").unwrap();
frame.display()
}
/// I'm sorry about the formatting, I'm not very good at IO formatting
/// Feel Free to reach out and offer a better DataFrame display function
///
/// Expected Output:
/// "col1" "col2" "col3"
/// "row1" 0 1 2
/// "row2" 3 4 5
/// "row3" 6 7 8
/// "col1" "col2" "col3"
/// "row1" 0 1 2
/// "row2" 3 4 5
/// "row3" 6 7 8
/// "Label!" 10 11 12
/// "col1" "col2" "col3"
/// "row1" 0 1 2
/// "row2" 3 4 5
/// "row3" 6 7 8
fn series_add_sub() {
let mut series = quick_series();
series.display();
series.mut_add("data4", 4);
series.display();
let mut new_series: Series<&str, i32> = series.no_mut_add("data5", 5);
new_series.display();
new_series.mut_sub(5).unwrap();
new_series.display();
}
// Generates example datastructures
fn quick_frame() -> DataFrame<'static, i32> {
DataFrame::new(
vec![
vec![0,1,2],
vec![3,4,5],
vec![6,7,8]
],
vec!["row1", "row2", "row3"],
vec!["col1", "col2", "col3"]
)
}
fn quick_series() -> Series<&'static str, i32> {
Series::new(
vec!["data1", "data2", "data3"],
vec![1,2,3]
)
}
```