A wrapper around the cvode(S) ODE solver from sundials.

[ [documentation](https://docs.rs/cvode-wrap) ] [ [lib.rs](https://lib.rs/crates/cvode-wrap) ] [ [git repository](https://gitlab.inria.fr/InBio/Public/cvode-rust-wrap) ]

Building sundials

To build sundials, activate the sundials-sys/build_libraries feature.

Examples

Oscillator

An oscillatory system defined by x'' = -k * x.

Without sensitivities

rust let y0 = [0., 1.]; //define the right-hand-side fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult { *ydot = [y[1], -y[0] * k]; RhsResult::Ok } //initialize the solver let mut solver = SolverNoSensi::new( LinearMultistepMethod::Adams, f, 0., &y0, 1e-4, AbsTolerance::scalar(1e-4), 1e-2, ) .unwrap(); //and solve let ts: Vec<_> = (1..100).collect(); println!("0,{},{}", y0[0], y0[1]); for &t in &ts { let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap(); println!("{},{},{}", t, x, xdot); }

With sensitivities

The sensitivities are computed with respect to x(0), x'(0) and k.

```rust let y0 = [0., 1.]; //define the right-hand-side fn f(t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult { *ydot = [y[1], -y[0] * k]; RhsResult::Ok } //define the sensitivity function for the right hand side fn fs( _t: Realtype, y: &[Realtype; 2], _ydot: &[Realtype; 2], ys: [&[Realtype; 2]; NSENSI], ysdot: [&mut [Realtype; 2]; N_SENSI], k: &Realtype, ) -> RhsResult { // Mind that when indexing sensitivities, the first index // is the parameter index, and the second the state variable // index *ysdot[0] = [ys[0][1], -ys[0][0] * k]; *ysdot[1] = [ys[1][1], -ys[1][0] * k]; *ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]]; RhsResult::Ok }

const N_SENSI: usize = 3;

// the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk let ys0 = [[1., 0.], [0., 1.], [0., 0.]];

//initialize the solver let mut solver = SolverSensi::new( LinearMultistepMethod::Adams, f, fs, 0., &y0, &ys0, 1e-4, AbsTolerance::scalar(1e-4), SensiAbsTolerance::scalar([1e-4; NSENSI]), 1e-2, ) .unwrap(); //and solve let ts: Vec<_> = (1..100).collect(); println!("0,{},{}", y0[0], y0[1]); for &t in &ts { let (tret, &[x, xdot], [&[dy0dy00, dy1dy00], &[dy0dy01, dy1dy01], &[dy0dk, dy1dk]]) = solver.step(t as , StepKind::Normal).unwrap(); println!( "{},{},{},{},{},{},{},{},{}", t, x, xdot, dy0dy00, dy1dy00, dy0dy01, dy1dy01, dy0dk, dy1_dk ); } ```