A neural network, and tensor dynamic automatic differentiation implementation for Rust.
Fully-connected neural network (full version): ```rust for _ in 0..iterations { let x = rng.gen_range(-1.0..1.0); let input = arr![arr![x]]; let target = x.exp();
let result = model.forward(input); let loss = model.backward(arr![target]);
println!( "in: {}, out: {}, target: {}, loss: {}", x, result[0], target, loss ); } ```
for _ in 0..10 { c = &c + &(&a * &b); if c[0] > 50.0 { c = &c * &a; } }
assert_eq!(c, arr![195300.0]);
c.backward(None);
asserteq!(c.gradient(), arr![1.0]);
asserteq!(b.gradient(), arr![97650.0]);
assert_eq!(a.gradient(), arr![232420.0]);
* Custom operation (still needs some work):
rust
// note proper implementations should handle tracked, and untracked cases
let op: array::ForwardOp = Arc::new(|x: &[&Array]| {
Arrays::new((x[0].dimensions(), x[0].values().iter().zip(x[1].values()).map(|(x, y)| x * y).collect::
let opclone = Arc::clone(&op);
let backwardop: array::BackwardOp = Arc::new(move |c: &mut Vec
let a = arr![1.0, 2.0, 3.0]; let b = arr![3.0, 2.0, 1.0]; let mut product = Array::op(&vec![&a, &b], op, Some(backwardop)); asserteq!(product, arr![3.0, 4.0, 3.0]); product.backward(None); asserteq!(b.gradient(), arr![1.0, 2.0, 3.0]); asserteq!(a.gradient(), arr![3.0, 2.0, 1.0]); ```
arr!
macro (which however, currently still needs more work).Arc
, and Mutex
.tracked()
, and untracked()
in array.rs
.