A crate for scientific and statistical computing. For a list of what this crate provides, see FEATURES.md
. For more detailed explanations, see the documentation.
To use the latest stable version in your Rust program, add the following to your Cargo.toml
file:
rust
// Cargo.toml
[dependencies]
compute = "0.1"
For the latest version, add the following to your Cargo.toml
file:
rust
[dependencies]
compute = { git = "https://github.com/al-jshen/compute" }
There are many functions which rely on linear algebra methods. You can either use the provided Rust methods (default), or use BLAS and/or LAPACK by activating the "blas"
and/or the "lapack"
feature flags in Cargo.toml
:
rust
// example with BLAS only
compute = {version = "0.1", features = ["blas"]}
```rust use compute::distributions::*;
let beta = Beta::new(2., 2.); let betadata = b.sample_vec(1000); // vector of 1000 variates
println!("{}", beta.mean()); println!("{}", beta.var()); println!("{}", beta.pdf(0.5)); // probability distribution function
let binom = Binomial::new(4, 0.5);
println!("{}", p.sample()); // sample single value println!("{}", p.pmf(2)); // probability mass function ```
```rust use compute::prelude::*;
let x = vec![1., 2., 3., 4.]; let xd = design(&x, x.len()); // make a design matrix let y = vec![3., 5., 7., 9.];
let mut clf = PolynomialRegressor::new(2); // degree 2 (i.e. quadratic) clf.fit(&x, &y); // linear least squares fitting println!("{:?}", clf.coef); // get model coefficients
let ybin = vec![0., 0., 1., 1.]; let mut glm = GLM::new(ExponentialFamily::Bernoulli); // logistic regression glm.setpenalty(1.); // L2 penalty glm.fit(&xd, &y, 25).unwrap(); // fit with scoring algorithm (MLE), cap iterations at 25 println!("{:?}", glm.coef().unwrap()); // get estimated coefficients println!("{:?}", glm.coef().coefcovariancematrix().unwrap()); // get covariance matrix for estimated coefficients ```
```rust use compute::timeseries::*;
let x = vec![-2.584, -3.474, -1.977, -0.226, 1.166, 0.923, -1.075, 0.732, 0.959];
let mut ar = AR::new(1); // AR(1) model ar.fit(&x); // fit model with Yule-Walker equations println!("{:?}", ar.coeffs); // get model coefficients println!("{:?}", ar.predict(&x, 5)); // forecast 5 steps ahead ```
```rust use compute::integrate::*;
let f = |x: f64| x.sqrt() + x.sin() - (3. * x).cos() - x.powi(2); println!("{}", trapz(f, 0., 1., 100)); // trapezoid integration with 100 segments println!("{}", quad5(f, 0., 1.)); // gaussian quadrature integration println!("{}", romberg(f, 0., 1., 1e-8, 10)); // romberg integration with tolerance and max steps ```
```rust use compute::signal::*;
let sig = vec![0.973, 0.361, 0.715, -1.158, 1.392, 0.415, 2.304, -0.844, 0.805, 0.242]; let smoothed = savitzky_golay(&sig, 5, 3) // LOESS, cubic smoothing with 5 points let impulse = delta(5, 0.5); // delta function with 5 steps and dt = 0.5 let res = convolve(&sig, &impulse, 0.5); // impulse response of signal ```
```rust use compute::linalg::*;
let x = vec![ 2., 3., 4., 5., ]; let y = vec![ 5., 2., 6., 1., ]; println!("{:?}", lu(&x)); // calculate LU decomposition for x println!("{:?}", solve_sys(&x, &y)); // solve 2x2 system of equations (each column of y is a system) println!("{:?}", matmul(&x, &y, 2, 2, false, true)); // matrix multiply, transposing y ```
```rust use compute::statistics::*;
let x = vec![2.2, 3.4, 5., 10., -2.1, 0.1]; let y = vec![1., 2., -2., 5.7, -0.7, 5.7];
println!("{}", mean(&x)); println!("{}", var(&x)); println!("{}", max(&y)); println!("{}", sample_std(&y)); println!("{}", covariance(&x, &y)); ```
```rust use compute::functions::*;
println!("{}", logistic(4.)); println!("{}", boxcox(5., 2.); // boxcox transform println!("{}", digamma(2.)); println!("{}", binom_coeff(10, 4)); // n choose k ```