Changepoint is a library for doing change point detection for streams of data.
Includes the following change point detection algorithms:
* Bocpd
-- Online Bayesian Change Point Detection Reference.
* BocpdTruncated
-- Same as Bocpd
but truncated the run-length distribution when those lengths are unlikely.
* Argpcp
-- Gaussain Process Change Point detector Reference
``rust
//! A demo of the online Bayesian change point detection on
//! the 3-month Treasury Bill Secondary Market Rate from
//!
//! After this example is run, the file
trasury_bill.ipynb` can be run to generate
//! plots for this dataset.
//!
//! > Board of Governors of the Federal Reserve System (US), 3-Month Treasury Bill: Secondary
//! > Market Rate [TB3MS], retrieved from FRED, Federal Reserve Bank of St. Louis;
//! > https://fred.stlouisfed.org/series/TB3MS, August 5, 2019.
use changepoint::{utils::, BocpdTruncated, BocpdLike}; use rv::prelude::; use std::io; use std::path::PathBuf; use std::fs::readtostring;
fn main() -> io::Result<()> {
// Parse the data from the TB3MS dataset
let mut csvpath = PathBuf::from(env!("CARGOMANIFESTDIR"));
csvpath.push("resources/TB3MS.csv");
let data: String = readtostring(&csvpath)?;
let (dates, pctchange): (Vec<&str>, Vec
// Create the Bocpd processor
let mut cpd = BocpdTruncated::new(
250.0,
NormalGamma::new_unchecked(0.0, 1.0, 1.0, 1.0),
);
// Feed data into change point detector and generate a sequence of run-length distributions
let rs: Vec<Vec<f64>> = pct_change
.iter()
.map(|d| cpd.step(d).into())
.collect();
// Determine most likely change points
let change_points: Vec<usize> = map_changepoints(&rs);
let change_dates: Vec<&str> =
change_points.iter().map(|&i| dates[i]).collect();
// Write output for processing my `trasury_bill.ipynb`.
write_data_and_r(
"treasury_bill_output",
&pct_change,
&rs,
&change_points,
)?;
println!("Most likely dates of changes = {:#?}", change_dates);
Ok(())
} ```
To run this example, from the source root, run cargo run --example treasury_bill
.
The partner notebook can be used to generate the following plots: